Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева - Кин Сэм - Страница 17


17
Изменить размер шрифта:

В настоящее время эти странные мнения не подтверждаются. Кстати, Фред Хойл, один из соавторов В2FH, несмотря на свою профессиональную квалификацию и заслуги, не верил ни в дарвиновскую теорию эволюции, ни в Большой взрыв, а выражение это впервые употребил в насмешку в одной из радиопередач на Би-би-си. Но упомянутый выше вопрос об алмазе все-таки научно обоснован. В свое время некоторые ученые всерьез доказывали (или втайне верили), что огромный Юпитер действительно может породить такой гигантский драгоценный камень. Некоторые по-прежнему надеются, что на Юпитере удастся обнаружить не только жидкие алмазы, но и твердые, размером с «Кадиллак». А если уж говорить о действительно экзотических веществах, отметим, что, по мнению ученых, странное магнитное поле Юпитера может генерироваться лишь океаном жидкого черного «металлического водорода». На Земле металлический водород удавалось зафиксировать лишь в течение нескольких наносекунд, в самых экстремальных условиях, какие только можно создать в лаборатории. Но многие физики убеждены, что Юпитер – необъятный резервуар металлического водорода и океан этого вещества достигает глубины в 30 тысяч километров.

Причина, по которой элементы существуют на Юпитере в столь необычном состоянии, заключается в том, что эта планета (а также, в меньшей степени, Сатурн, второй по величине газовый гигант нашей планетарной системы) является своеобразной переходной формой. Юпитер – не столько огромная планета, сколько маленькая неудавшаяся звезда. Если бы на этапе формирования Юпитер вобрал в себя примерно в десять раз больше дейтерия, чем имеет сейчас, то мог бы стать бурым карликом. Бурый карлик – это звезда, массы которой едва хватает для вялотекущего ядерного синтеза и излучения «низковаттного» рыжеватого света[39]. Тогда в нашей Солнечной системе было бы две звезды. Далее мы увидим, что в этом нет ничего из ряда вон выходящего. Юпитер действительно остыл настолько, что какой-либо ядерный синтез на нем невозможен, но сохранил достаточную массу, температуру и давление, чтобы атомы на нем оказывались очень близко друг к другу и вели себя совсем не так, как на Земле. Внутри Юпитера создается «переходная среда», свойства которой неблагоприятны как для ядерных, так и для привычных нам химических реакций. В таких условиях вполне могут существовать и алмазы величиной с небольшую планету, и маслянистый металлический водород.

Атмосферные условия на поверхности Юпитера также приводят к удивительным взаимодействиям между элементами. Но такие явления вполне нормальны на планете, где существует Большое Красное Пятно. Это огромный циклон, в три раза шире нашей Земли, который уже несколько веков продолжает бушевать в атмосфере Юпитера. Возможно, метеорологические процессы в нижних слоях атмосферы Юпитера еще более зрелищные. Поскольку солнечный ветер донес до орбиты Юпитера лишь самые легкие, а значит – самые распространенные элементы, состав этой планеты, в принципе, должен быть почти как у настоящей звезды: 90 процентов водорода, почти 10 процентов гелия и следовые количества других легких элементов, вплоть до неона. Но последние спутниковые наблюдения показали, что содержание гелия в верхних слоях атмосферы Юпитера на четверть меньше ожидаемого, а содержание неона на 90 % меньше, чем полагали ученые. Неслучайно, что в более глубоких слоях атмосферы эти элементы обнаружились в изобилии. Очевидно, какие-то силы переместили гелий и неон из одних мест в другие. Вскоре астрономы поняли, что получить представление об этих силах позволит метеорологическая карта Юпитера.

В ядре настоящей звезды все ядерные микровзрывы уравновешиваются постоянным центростремительным воздействием гравитации. На Юпитере такая ядерная печь отсутствует, поэтому ничто не мешает сравнительно тяжелым атомам гелия и неона проникать из внешних газообразных слоев вглубь атмосферы. Пройдя примерно четверть пути к центру планеты, эти газы оказываются в непосредственной близости от слоя жидкого металлического водорода, где сильнейшее атмосферное давление превращает эти газы в жидкости.

Большинство читателей видели, как гелий и неон красочно светятся в стеклянных трубках – так называемых неоновых лампах. Трение, возникающее при перемещении капелек этих элементов, плавающих в атмосфере Юпитера, может возбуждать атомы газов аналогичным образом, так что капельки напоминают жидкие метеоры. Таким образом, если сравнительно крупные капли падают достаточно быстро и достаточно далеко, то кто-нибудь, парящий прямо над поверхностью водородного юпитерианского океана, мог бы взглянуть в кремово-оранжевые небеса планеты и полюбоваться невообразимым световым шоу. Представьте себе фейерверки, озаряющие юпитерианскую ночь триллионами ярко-малиновых линий, которые уже получили среди ученых название неоновый дождь.

* * *

История скальных планет Солнечной системы (Меркурия, Венеры, Земли, Марса) иная, их драмы не столь зрелищны. На первом этапе формирования Солнечной системы образовались газовые гиганты, для этого потребовалось всего около миллиона лет. Тем временем сравнительно тяжелые элементы скапливались в небесном «каменном поясе», примерно по центру которого пролегает орбита Земли. Там они тихо дожидались своего часа в течение еще нескольких миллионов лет. Когда Земля и другие планеты земной группы наконец приняли форму плотных шарообразных тел, эти элементы были распределены в них более-менее равномерно. Как заметил великий Уильям Блейк, можно было бы поднять горсть земли и подержать в руке всю Вселенную, всю периодическую систему сразу. Но элементы начали перемешиваться друг с другом, группируясь вместе со своими близнецами и собратьями по периодической системе. После миллиардов таких переходов вверх и вниз по земной коре сформировались значительные залежи многих элементов. На всех скальных планетах тяжелое железо опустилось вниз, ближе к ядру. Именно там и сосредоточены основные его запасы. Например, на Меркурии можно наблюдать не менее чудесное явление, чем в атмосфере Юпитера: иногда меркурианское жидкое ядро выделяет железные «снежинки». Причем они не шестиугольные, как всем знакомые земные снежинки из замерзшей воды, а больше напоминают микроскопические кубики[40]. Земля могла превратиться просто в летящий ком урана, алюминия и других элементов, но события стали разворачиваться иначе: планета достаточно сильно остыла и затвердела, в результате дальнейшее перемешивание элементов осложнилось. Сегодня на нашей планете многие элементы сгруппированы в компактные отложения, которые, однако, встречаются повсюду в земной коре. За исключением некоторых известных случаев, ни одна страна не обладает монополией на добычу какого-либо элемента.

По сравнению со скальными планетами других звездных систем, четыре планеты в нашей системе обладают различным содержанием каждого элемента. Вероятно, большинство планетарных систем сформировались на месте взрывов сверхновых, и точное соотношение элементов в каждой системе зависит от того, какое количество энергии выделилось при конкретном взрыве и сформировало элементы. Кроме того, важен состав окружающей среды (космической пыли), с которой смешивались звездные выбросы. В результате состав элементов каждой планетарной системы получился уникальным. Из уроков химии вы, вероятно, помните, что под каждым элементом в периодической системе записан номер, соответствующий его атомной массе. Этот номер равен средней сумме масс протонов и нейтронов, содержащихся в атомах данного элемента. Так, атомная масса углерода равна 12,011 единицы. Это именно среднее значение. Большинство атомов углерода весит ровно 12 единиц, а оставшиеся 0,011 приходятся на незначительную долю атомов с массой 13 или 14 единиц. Но в другой галактике средняя атомная масса углерода может быть чуть выше или чуть ниже. Более того, сверхновые звезды порождают множество радиоактивных элементов, которые начинают распадаться сразу же после взрыва. Крайне маловероятно, что в двух разных звездных системах соотношение радиоактивных и нерадиоактивных элементов окажется одинаковым, если только две эти системы не образовались одновременно.

вернуться

39

Ядерный синтез на Юпитере мог бы происходить на основе дейтерия – тяжелого водорода, в атоме которого содержится один протон и один нейтрон, – если бы этот изотоп встречался в природе в тринадцать раз чаще. Учитывая, насколько редок дейтерий (один атом дейтерия приходится на 6500 атомов обычного водорода), это была бы очень тусклая, но настоящая звезда. Чтобы на Юпитере протекал стабильный дейтериевый ядерный синтез, масса планеты должна была бы быть в семьдесят пять раз больше.

вернуться

40

Погода на Марсе не менее удивительна, чем на Юпитере или Меркурии. Так, на Марсе иногда идет снег из перекиси водорода.