Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Пилотируемые полеты на Луну - Шунейко Иван Иванович - Страница 9
Вычисление потерь
Приращение скорости, обеспечиваемое ракетной ступенью, может быть определено путем вычитания из характеристической скорости гравитационных, аэродинамических потерь и потерь на управление[3]
В табл. 1 представлены типичные значения потерь для ракеты-носителя Saturn V применительно к траектории полета на Луну.
Таблица 1
Несовпадение вектора тяга двигательной установки с вектором скорости полета ракеты приводит к потерям на управление. Эти потери уменьшают скорость полета ракеты-носителя Saturn V на 187,5 м/сек. Однако, если бы траектория была направлена против вектора гравитации, гравитационные потери были бы значительно больше 187,5 м/сек.
Программное изменение соотношения компонентов топлива
Во время активного участка полета второй ступени ракеты-носителя Saturn V производится 20%-ное ступенчатое изменение соотношения компонентов топлива, вызывающее соответственно уменьшение тяги и увеличение удельного импульса.
При одинаковых заправках топлива характеристическая скорость ступени одинакова для полетов с постоянным соотношением компонентов топлива и программным изменением этого соотношения. Таким образом, улучшение характеристик при программном изменении соотношения компонентов достигается путем уменьшения потерь скорости, а не вследствие увеличения характеристической скорости. В основном, программное изменение соотношения компонентов уменьшает потери благодаря тому, что при этом топливо более быстро расходуется на начальном участке траектории и затраты энергии на подъем топлива в поле тяготения уменьшаются.
Угол наклона траектории полета ракеты-носителя Saturn V на активном участке имеет вид экспоненциальной кривой (рис. 13.1).
Эффект ступенчатого изменения соотношения компонентов топлива при полете по такой траектории не поддается простому наглядному объяснению, однако можно сказать, что большая тяга желательна, когда движение ракеты близко к вертикальному, а большой удельный импульс желателен при движении ракеты, близком к горизонтальному. Рассмотрим пример, позволяющий показать, почему оптимальное значение удельного импульса сильно зависит от угла наклона траектории полета.
Рис. 13.1. Программа изменения угла наклона траектории полета ракеты-носителя Saturn V
Полет с постоянным углом наклона траектории
Рассматривая движение ракеты по траектории с постоянным углом наклона в постоянном гравитационном поле, предположим, что тяга, расход топлива и удельный импульс являются линейными ограниченными функциями соотношения компонентов топлива, причем тяга и расход топлива – возрастающие функции, а удельный импульс – убывающая функция.
Задача сводится к выбору такого соотношения компонентов топлива, при котором ракета в конце активного участка будет иметь максимальную скорость.
Если предположить, что потери на управление и преодоление силы аэродинамического сопротивления пренебрежимо малы, а удельный импульс постоянен, то скорость в конце активного участка полета ракеты может быть определена по формуле
Поскольку g0 и ? постоянные величины, уравнение можно проинтегрировать
Для второй ступени ракеты-носителя Saturn V можно установить, что меньший удельный импульс обеспечивает максимум конечной скорости в случае вертикального полета, так как большая тяга и меньшая продолжительность активного участка позволяют уменьшить гравитационные потери, но при горизонтальном полете член, характеризующий гравитационные потери, равен нулю, независимо от времени работы двигателей, и в этом случае желателен более высокий удельный импульс. Таким образом для какого-то промежуточного значения угла ? между 0 и 90° скорость в конце активного участка не зависит от величины удельного имлульса. Это значение можно определить по формуле граничные значения линейных функций удельного импульса и секундного расхода.
Для второй ступени ракеты-носителя Saturn V по уравнению (13;5) получим ?=3; таким образом, если угол наклона траектории меньше 3°, то желательно иметь большой удельный импульс при меньшей тяге, а если ?>3° снижение удельного импульса при увеличении тяги позволяет увеличить полезную нагрузку.
Связи между приращениями скорости и полезной нагрузки
В конечном итоге необходимо обеспечить максимум веса полезной нагрузки, а не скорости в конце активного участка траектории полета.
Для последней ступени ракеты в момент выключения двигательной установки имеем
Подставляя m1= m2+?m1, разлагая полученное выражение в ряд Тейлора и решая относительно ?m1 получим
Для ракеты-носителя Saturn V приращение характеристической скорости на 1 м/сек экивалентно увеличению веса полезной нагрузки, выводимой на траекторию полета к Луне, на 15 кг.
Полет с переменным углом наклона траектории
В практических случаях угол наклона траектории полета ракеты меняется со временем, и оптимальная величина удельного импульса не является постоянной для всего полета. Меньший удельный импульс при большей тяге выгоден на участке траектории, близком к вертикальному, затем при переходе к более пологому участку траектории целесообразно изменить соотношение компонентов топлива таким образом, чтобы обеспечить высокий удельный импульс. Однако требование достижения определенной высоты в конце активного участка усложняет анализ реального полета.
В реальном полете управление ракетой, близкое к оптимальному, обеспечивает достижение заданной высоты в конце активного участка.
Изменение расхода топлива в процессе полета в предположении постоянства удельного импульса и фиксированного времени работы двигательной установки не приводит к изменению характеристической скорости. Однако, если энерговооруженность выше и расход топлива больше на начальном этапе полета, то ракета будет двигаться с большим ускорением и, следовательно, высота полета в конце активного участка будет больше.
Таким образом, если топливо выгорает быстрее при большей тяге на начальном этапе полета, то это приводит к увеличению высоты в конце активного участка. Но высота, большая по сравнению с расчетной, нежелательна, поэтому вектор скорости будет раньше приведен в горизонтальное положение. В результате соответственно снижаются потери на преодоление гравитационных сил и на управление.
3
Иногда в это уравнение включаются потери, связанные с кориолисовым ускорением, нерасчетным истечением газа из сопла ЖРД и гарантийным запасом топлива.
- Предыдущая
- 9/72
- Следующая