Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Софья Васильевна Ковалевская - Полубаринова-Кочина Пелагея Яковлевна - Страница 19


19
Изменить размер шрифта:

Я желал бы, чтобы моя ученица и в дальнейшем таким же образом выражала благодарность своему учителю и другу» [125, с. 178].

Вейерштрасс возвращается к уравнению теплопроводности в письме от 9 мая:

Вот небольшая задача. Дифференциальное уравнение с частными производными

дер

dt дх*

70

имеет частный интеграл

<P = (^)-V*», и =-±г-(Х — %), (**)

где Я, р, V обозначают произвольные постоянные, a F (и) должно удовлетворять дифференциальному уравнению

F" (и) + 4" V-uF< (и) + (AvF (и) = 0. (***)

Каково общее решение этого уравнения?

При р=1, v=V2 можно взять

V?

F(u) = f(%)e~.

Тогда из частного интеграла

(Р = МШ- e~ll' [(as-AWq

Vt

получается общий интеграл

оо

Ф= jj -IW-e-V«

—оо ^*

Однако, если при бесконечно больших значениях Я /(Я) становится в больщей степени бесконечным, чем функция е-<*2 дри сколь угодно малой постоянной с, то предыдущее выражение не имеет смысла. Можно ли в этом случае получить более пригодное выражение, применяй общую функцию F (и), удовлетворяющую построенному дифференциальному уравнению при других значениях постоянных р, V? Или же произвольная функция необходимо связана с ограничением, что при Я=з=°° обязательно

[125, с. 178]

Последнее письмо, которое Вейерштрасс написал Соне в ее бытность в Берлине, помечено 18 августа 1874 г. В это время она собиралась на родину, тогда как Юлия Лермонтова думала еще остаться на некоторое время в Берлине. Вейерштрасс предлагает свои услуги: «если я могу быть полезен в каком-нибудь духе сегодня Тебе или Юлии... скажи своей приятельнице, что с 4 октября я во всяком случае буду здесь» [125, с. 187] и что она может обращаться за помощью.

Диплом доктора философии

Вейерштрасс восхищался математическими способностями своей ученицы: «Что касается математического образования Ковалевской, то могу заверить, что я имел очень

71

немногих учеников, которые могли бы сравниться с нею но прилежанию, способностям, усердию и увлечению наукой»,— писал он Фуксу [13, с. 346].

В 1874 г. Вейерштрасс возбудил перед Геттингенским университетом вопрос о присуждении С. В. Ковалевской степени доктора философии in absentia (т. е. заочно) и бед экзаменов. В ряде писем, посланных по этому поводу профессорам Геттингенского университета, Вейерштрасс дает характеристику трех работ, представленных Ковалевской, из которых каждая, по его мнению, была достаточна для получения искомой степени [13, с. 344].

Первая из этих работ, «К теории уравнений в частных производных» [1], содержит доказательство теоремы существования голоморфного решения системы уравнений с частными производными нормального вида. Известно, что Коши в 1842 г. дал теорему существования для линейной системы уравнений с частными производными и указал, как привести к этому случаю нелинейную систему [138, 139]. Однако Ковалевская, как и Вейерштрасс, не знала этих работ Коши.

Заметим, что голоморфной, или аналитической, функцией переменных Xi, х2, ..., хп в окрестности точки яД х%,..., Хп называется функция, разложимая в ряд:

F (Xfo Х%, • • • > #n) === 21 ^SiS2 ... {%1 #i) ^

SA...Sn n

X (хг — 4)Ss ...(xn — 4)®*,

сходящийся при достаточно малых значениях \xi—Xi 1, j = 1, 2, ..., п.

Теорема Коши — Ковалевской в настоящее время формулируется следующим образом [140].

Дана система уравнений

д %ui

п, === Fi (t, Х\, * * • у хП1 Uiy ••• у Un у.. • dt 1

\ (1>

диз ...I

dt1''" х^1 . . . дх^п J

(h ] = I» 2,..., N’ ко -|- ki 4- • • • + кп = к^ ге*, ко ^

имеющая нормальную форму. Это значит, что среди прощн водных по t наивысшего порядка щ от каждой функции ии

72

входящих в систему, должна содержаться производная dntUi/dtnti причем система разрешена относительно этих производных.

Пусть теперь при t=t° заданы начальные значения неизвестных функций щ и их производных по t до порядка

П\ 1 :

|(&=0 соответствует сама функция щ).

При этом все функции <p.W заданы в одной и той же области G(xu ..., хп).

Задачей Коши называется нахождение решения системы (1) при начальных условиях (2). Если все функции Fi аналитичны в некоторой окрестности точки (t°, Xi°,

cp^ № '"к )и все функцииФ^}аналитичны в окрестности точки (t°, xt°,..., хп°), то задача Коши имеет аналитическое решение в некоторой окрестности точки (?°, ...,#п°), и притом единственное в классе аналитических функций. Здесь

При доказательстве Ковалевская пользовалась мажорантными функциями по Вейерштрассу:

а не по Коши:

Доказательство Ковалевской проще доказательства Коши, и, по словам Пуанкаре, она дала теореме ее окончательную форму. Теперь эта теорема входит в основные курсы анализа [141, с. 380]. Особенно же существенно в работе Ковалевской то, что она установила важное значение приведения системы к нормальному виду. Это выясняется на примере, данном Ковалевской, простейшего уравнения (уравнения теплопроводности), для которого задача Коши, если это уравнение написано не в нормальной форме, нё имеет голоморфного решения,— это было значительное

(? = 0, i,...,ni — 1)

(2)

atkodxkl , . . дх*пп ,=(0

73

открытие для того времени. (Бейерштрасс писал, что первоначально Ковалевская показала это для более сложного уравнения.)

Пример Ковалевской. Найти решение уравнения

0ф 02ф

’ dt дх2 5

удовлетворяющее условию ф(я, i) =1/(1—х) при ?=0. Нетрудно видеть, что если есть аналитическое решение, то оно должно представляться рядом по степеням U

со

(2tt)l

п\

tn

(1 _ (Г)2П-Ы

который, однако, расходится при всех t?=0. Следовательно, аналитического решения такого рода не существует.

О.       А. Олейник в своем докладе «Теорема С. В. Ковалевской и ее роль в современной теории уравнений с частными Производными», сделанном й Институте проблем механики АН СССР в 1975 г. в связи с 125-летием со дня рождения С. В. Ковалевской, сказала, что теорема Ковалевской находит важные и существенные применения в исследованиях по теории уравнений с частными производными, выполненных вплоть до самого последнего времени, и тонкие современные исследования все в большей степени выявляют ее глубокий и завершенный характер.

Многих занимал вопрос о степени самостоятельности Софьи Ковалевской при разработке темы, поставленной Вейерштрассом. По этому поводу Бейерштрасс пишет Дюбуа-Реймону 25 сентября 1874 г.: «В диссертации, о которой идет речь, я — не считая того, что поправил многочисленные грамматические ошибки,—не принимал другого участия, кроме того, что поставил задачу перед автором. И в этом отношении я тоже должен заметить, что я, собственно, не ожидал другого результата по сравнению с известным из теории обыкновенных дифференциальных уравнений. Я был, чтобы оставаться при простейшем случае, того мнения, что степенной ряд от многих переменных, удовлетворяющий формально уравнению в частных производных, должен также быть всегда сходящимся внутри некоторой области и должен, следовательно, представлять тогда функцию, действительно удовлетворяющую дифференциальному уравнению. Что это не так, как Вы видите из рассмотренного в диссертации примера уравнения d<p/dt=d2y/dx2i было открыто, к моему большому изумле-

74

дню, моей ученицей совершенно самостоятельно, — и притом сначала для гораздо более сложных дифференциальных уравнений, чем приведенное,— так что она даже сомневалась в возможности получения общего результата; кажущиеся такими простыми средства, которые она нашла для преодоления возникшего таким образом затруднения, я высоко оценил как доказательство ее правильного математического чутья» [142, с. 204].

Вторая работа, представленная Ковалевской для присуждения степени доктора философии, относится к вопросу о форме кольца Сатурна. Это «Дополнения и замечания к исследованию Лапласа о форме кольца Сатурна» [5]* Она посвящена следующей задаче.