Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Теория струн и скрытые измерения вселенной - Яу Шинтан - Страница 14
Я сидел в аудитории, пытаясь сделать выводы из услышанного, и тут меня захлестнул поток мыслей. Я интересовался кривизной начиная с колледжа и чувствовал, как в свете открытий Эйнштейна кривизна может играть ключевую роль для понимания Вселенной и что именно в эту область исследований я могу однажды внести свой собственный вклад. Дифференциальная геометрия предоставляет средства для описания движения массы в искривленном пространстве-времени, не вскрывая при этом причины этого искривления. Эйнштейн, в свою очередь, при помощи тех же средств попытался объяснить, откуда берется искривление. Форма пространства как результат действия гравитации и форма пространства как следствие его кривизны, рассматривавшиеся ранее как две разные задачи, слились в единую проблему.
Затем я задался следующим вопросом: поскольку известно, что причиной возникновения гравитации является масса, задающая кривизну пространства, что можно сказать о форме пространства, называемого вакуумом, в котором какое-либо вещество полностью отсутствует? Что определяет кривизну пространства в этом случае? Говоря иными словами, имеют ли эйнштейновские уравнения гравитационного поля какое-либо еще решение в вакууме, кроме плоского, которое нас менее всего интересует: с пространственно-временным континуумом, в котором нет ни материи, ни гравитации, ни взаимодействий и совершенно ничего не происходит? Существует ли такое «нетривиальное» пространство, в котором отсутствует материя, но существует кривизна и силы гравитации?
Тогда я был еще не в состоянии ответить на эти вопросы. Не знал я и того, что ученый по имени Эудженио Калаби рассмотрел частный случай этой же проблемы более чем за пятнадцать лет до того, впрочем, исходя из чисто математических предпосылок и не касаясь ни гравитации, ни идей Эйнштейна. Единственное, что я тогда мог сделать, — это удивиться и задать вопрос: «А что, если бы?»
Рис. 2.5. Геометр Ч. Ш. Черн (фотография Джорджа М. Бергмана)
Это был весьма неожиданный для меня вопрос по многим причинам — особенно если учесть, с чего я начинал свой жизненный путь: следуя по пути, который должен был привести меня к торговле домашней птицей, в конце концов я пришел к геометрии, общей теории относительности и теории струн.
Я родился в 1949 году в континентальном Китае, через год после моего рождения семья переехала в Гонконг. Отец был университетским профессором, имеющим весьма скромное жалованье и жену с восемью детьми, которых нужно было как-то прокормить. Несмотря на то что ему приходилось преподавать сразу в трех университетах, его заработок был столь скуден, что нам едва хватало на еду. Мы росли в бедности, без электричества и водопроводной воды; ванной нам служила ближайшая река. Однако наше богатство состояло в другом. Будучи философом, отец побуждал меня воспринимать мир с более отвлеченной точки зрения. Помню, как маленьким ребенком, подслушивая беседы, которые он вел со студентами и коллегами, я чувствовал волнение, хотя не понимал точного значения многих слов.
Отец всегда поощрял мои занятия математикой, хотя их и нельзя было назвать многообещающими. В возрасте пяти лет я сдавал вступительный экзамен в престижную городскую школу, но провалился именно на математике, поскольку вместо числа 75 я написал 57, а вместо числа 96 — 69 — ошибка, которую, как я сейчас полагаю, проще допустить в китайском, чем в английском. В результате мне пришлось учиться в посредственной сельской школе вместе с кучей хулиганистых ребятишек, которых едва ли заботило их образование. Чтобы выжить, мне тоже приходилось быть хулиганистым, настолько хулиганистым, что подростком я на время оставил школу и возглавил шайку юнцов, которые, так же как и я, привыкли слоняться по улицам в поисках неприятностей, и чаще всего их находили. Трагическое событие все изменило в моей жизни. Когда мне было четырнадцать, неожиданно умер отец, оставив нашу семью не только убитой горем, но и без средств к существованию, с кучей долгов и отсутствием какого-либо дохода. Поскольку теперь мне приходилось зарабатывать деньги для поддержания семьи, дядя посоветовал мне бросить школу и заняться разведением уток. Но у меня была другая идея: я решил преподавать математику другим ученикам. Учитывая наши финансовые обстоятельства, я понимал, что у меня есть только один шанс на успех, и сделал ставку на математику — все или ничего. Если бы я не справился с этим, моя судьба была бы предрешена, и второго шанса (кроме разведения домашней птицы) у меня не было. В подобных ситуациях, как мне кажется, люди стараются трудиться с удвоенным упорством. И хотя у меня, возможно, есть свои недостатки, никто и никогда не мог обвинить меня в лени.
Я не был лучшим учеником в средней школе, но старался наверстать упущенное в колледже. В первый же год я зарекомендовал себя как весьма неплохой студент, хотя и не добился каких-либо исключительных успехов. Все стало гораздо лучше во второй год, когда в наш Китайский университет Гонконга пришел преподавать юный геометр из Беркли, Стивен Салафф. Благодаря Салаффу я впервые почувствовал вкус настоящей математики. Мы вместе читали курс по обыкновенным дифференциальным уравнениям и позже совместно написали книгу по этому предмету. Салафф представил меня Дональду Сарасону, выдающемуся математику из Беркли, который проложил для меня дорогу поступления в аспирантуру после окончания всего трех курсов бакалавриата. Никакие проблемы, с которыми мне приходилось сталкиваться в математике, не могут сравниться с теми бюрократическими преградами, которые нам пришлось преодолеть при помощи Ч. Ш. Черна, великого китайского геометра, также работающего в Беркли, — чтобы добиться разрешения на мое досрочное поступление.
Попав в Калифорнию в двадцать лет и видя все многообразие математических дисциплин, открывающееся передо мной, я плохо представлял, в каком направлении мне двигаться. Сначала я склонился к операторной алгебре, одной из наиболее абстрактных областей математики, поскольку у меня было смутное чувство, что качество теории определяется степенью ее абстрактности.
Хотя в Беркли процветало множество математических дисциплин, в то время он был прежде всего одним из мировых центров — если не единственным мировым центром — развития геометрии, и присутствие в нем многих блестящих ученых, таких как Черн, начало оказывать на меня неумолимое влияние. Все это вместе с растущим пониманием того, что геометрия представляет собой огромную и богатую область, изобилующую многими возможностями, постепенно привело меня в их сообщество.
При этом я продолжал изучать столько разных предметов, сколько мог, посещая сразу шесть учебных курсов, изучая попутно материалы из области геометрии, топологии, дифференциальных уравнений, групп Ли, комбинаторики, теории чисел и теории вероятностей. Эти занятия удерживали меня в аудитории с 8:00 до 17:00 ежедневно, едва оставляя время на обед. Оставшееся время я проводил в математической библиотеке, ставшей для меня вторым домом. Я читал почти каждую книгу, которая попадала мне в руки. Поскольку в более молодом возрасте я не мог позволить себе покупать книги, то теперь, прохаживаясь между стеллажами, я ощущал себя ребенком, попавшим в магазин сладостей. По окончании обязательных занятий я часто оставался в библиотеке вплоть до момента закрытия, заработав себе репутацию человека, постоянно уходящего из читального зала последним. Конфуций как-то сказал: «Однажды я провел в размышлениях целый день без еды и целую ночь без сна, но я ничего не добился. Было бы лучше посвятить то время учению». И хотя тогда мне эта цитата еще не была знакома, я, тем не менее, полностью следовал именно этому образу мыслей.
Так почему же из всех областей математики именно геометрия заняла центральное место в моих мыслях и мечтах? Прежде всего потому, что она произвела на меня впечатление математической дисциплины, находящейся ближе всего к природе и, следовательно, ближе всего к ответам на те вопросы, которые заботили меня более всего.
- Предыдущая
- 14/108
- Следующая