Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Парадоксы науки - Сухотин Анатолий - Страница 33
«ПАРАДОКС ИЗОБРЕТАТЕЛЯ»
ВСЕ НАОБОРОТ
Что таится под названием этого парадокса? «Изобретатели велосипедов», опоздавшие родиться, или, наоборот, «чудаки», бросающие вызов здравому смыслу преждевременными открытиями?..
Ни то, ни другое; за этим именем скрывается столь же эффективный, сколь и интригующий обозначением исследовательский прием, эвристический (содействующий открытию) помощник в исканиях ученого.
Замечено, что научная проблема решается успешнее, если она осознана как общая и соответственно найден общий метод — такой, по отношению к которому метод решения исходной задачи оказывается лишь частным случаем. Этот прием и получил наименование «парадокса изобретателя».
Венгерский математик Д. Пойа, к авторитету которого мы обращаемся не только здесь, говорит о парадоксе в следующих выражениях: «Легче доказать более сильную теорему, чем более слабую». Напомним, что «слабым» принимается положение, логически выводимое из другого — «сильного». По-видимому, само название «парадокс изобретателя» изобрел где-то в начале нынешнего века также Д. Пойа. Во всяком случае, исследователи (И. Лакатос, например, тоже венгр) за разъяснениями отсылают к нему.
Чуть ранее немецкие математики П. Дирихле и Р. Дедекинд делятся наблюдением: «Как часто случается, общая задача оказывается легче, чем была бы частная, если бы мы пытались решить ее непосредственно в лоб».
Ситуация, что и говорить, необычная. Кажется естественным, что частная, близкая к повседневности, жизненным наблюдениям задача должна скорее поддаваться решению, нежели общая, «сильная», то есть, надо полагать, более глубокая. А получается наоборот. Получается, что к абстрактной, отрешенной от практики проблеме можно подобрать ключи быстрее, чем к проблеме, насыщенной конкретным, опытным содержанием.
И все же, сколь ни парадоксально положение, ему находятся удовлетворительные, можно сказать, вполне беспарадоксальные объяснения. По прежде чем рассказать о них, обратимся к свидетельствам истории науки.
Уже древним мыслителям означенный поворот мысли был ведом. Упомянутый прием лежит, в частности, в основе изобретенного еще на рубеже V — IV веков до нашей эры древнегреческим математиком Евдоксом метода «исчерпывания». Он применялся для измерения площадей конкретных фигур или объемов определенных тел и других частных задач, но был найден как общий методой представлял собой достаточно эффективный способ, явившийся предтечей интегрального исчисления.
И конечно же, мы не можем пройти мимо факта, хотя и снискавшего хрестоматийную известность, но очень убедительно демонстрирующего наш парадокс.
В III веке до н. э. тиран города Сиракузы Гиерон поручил однажды своему подданному Архимеду (находившемуся, кстати сказать, в близком родстве с Гиероном) определить, не подмешано ли к его золотой царской короне, изготовленной ювелирами, менее благородное серебро. Эту сугубо частную задачу Архимед смог решить лишь как общую, выявив знаменитый закон «подъемной силы», действующей на погруженное в жидкость тело.
…Долго бился Г. Лейбниц над задачей проведения касательной к кривой в заданной точке. Задача пришла из области строительной архитектуры и представлялась достаточно частной, но никак не давалась. А не пойти ли в обход, подумал ученый? То есть не решать ли не эту, а другую задачу, более общую, которая включала бы исходную в качестве одного из вариантов, но была значительно легче? Конкретно дело обстояло так.
Г. Лейбниц представил, что разыскивает не касательную, а прямую, пересекающею нашу кривую в данной точке (точке касания) и в некоторой другой, удаленной от первой известным расстоянием. В результате речь шла уже о проведении секущей. А это не составляло особого труда и осуществлялось благодаря уже разработанным приемам; скажем сильнее: с этой задачей мог справиться и школьник, знающий уравнение прямой.
Но, решив это, находим касательную уже как частный случай, именно путем сближения точек, когда расстояние между ними по дуге оказывается минимальным и в точке касания сводится к нулю, исчезает.
Так было изобретено дифференциальное исчисление — мощный, применимый во всех науках метод.
Определение же касательной — лишь эпизод в обширном классе проблем, которые могут быть решены с помощью этого всесильного математического аппарата.
Будучи не только математиком, но и философом, Г. Лейбниц не преминул выступить с методологическим наставлением. Он записывает: решая познавательною задачу, полезно «придумать какую-нибудь другую, общую задачу, которая содержит первоначальную и легче поддается решению». Как видим, это одно из первых осознаний (или, как нынче стало модным говорить, одна из рефлексий) «парадокса изобретателя». Затем последовало его использование в качестве инструмента эвристики.
Аналогичный прием, то есть поиск общего решения частной проблемы, лежал и у истоков интегрального исчисления.
Об И. Кеплере в ту пору, когда он стал знаменитым астрономом, императорским математиком и математиком провинции Верхняя Австрия (других титулов за неимением места не приводим), рассказывают. В 1613 году 42-летний ученый только что начал новую жизнь со второй женой Сусанной. Как заботливый муж, он решил запастись вином, благо был небывалый урожай винограда и вино стоило дешево. Когда бочки доставили во двор, появился купец, который, пользуясь лишь мерной линейкой, уверенно определял количество вина. Он опускал линейку в отверстие сосуда до упора в угол днища и после этого объявлял число амфор (тогдашняя мера емкости).
И. Кеплер был поражен простотой операции и даже усомнился в ее надежности. Ведь бочки не имели правильной цилиндрической формы. Как же наклонный отрезок между двумя определенными точками мог служить мерой вместимости? Тем более что, как знал И. Кеплер, в других местах, на Рейне например, те же операции вычисления были громоздкими.
Сомнения побудили ученого исследовать, как он пишет, «геометрические законы такого удобного и крайне необходимого в хозяйстве измерения, а также выяснить ею основания, если таковые имеются». Основания действительно нашлись. Да еще какие!
Так частная задача выросла до масштабов общей и решена в качестве общей: измерение объемов, очерченных кривыми поверхностями. Интересно, что книгу, в которой излагался новый метод, И. Кеплер назвал «Стереометрия винных бочек». Таким образом, он сохранил указание на то, чему обязано своим рождением интегральное исчисление.
Стоит заметить, что исходная задача была здесь особенно узкой, она оказалась даже не научной, а хозяйственной. То есть столь прозаической, что, по-видимому, только гений, подобный И. Кеплеру, мог, не смущаясь, заняться ею и поднять до теоретического понимания.
Математика не исключение. Выбор математического материала лишь выдает желание более выпукло оттенить эффективность метода, затаившегося под сенью «парадокса изобретателя». Ибо математика — наука наиболее глубоких возможностей.
Прием оправдал себя и в других обстоятельствах.
Позволим еще одно пояснение.
В 1854 году к знаменитому Л. Пастеру обратились виноделы города Лилля (Франция). Очевидно, они имели на это право: несколько лет назад именно в их городе Л. Пастер получил звание профессора химии. Причиной беспокойства явились… болезни вин, от которых винопромышленники терпели немалые убытки. В течение нескольких лет ученый исследовал, конечно, не оставляя других занятий, предложенную тему и накопец решил ее, создав теорию брожения. Он показал, что болезнь вина — лишь одно из проявлений общего свойства. Это не что иное, как способ жизнедеятельности микробов. Л. Пастер не только выявил виновников процесса, но и «наказал» их, предложив метод обезвреживания микроорганизмов, названный в его честь пастеризацией.
Ученый писал тогда: «Роль бесконечно малых казалась мне бесконечно большой как в качестве причины различных болезней, так и благодаря участию их в разложении и возвращении в воздух всего, что жило».
- Предыдущая
- 33/54
- Следующая