Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Ошибка Коперника. Загадка жизни во Вселенной - Шарф Калеб - Страница 23


23
Изменить размер шрифта:

Рискуют жизнью, подбираясь слишком близко к звездам, не только планеты-гиганты, но и маленькие планеты из камня и металла, выстроившиеся в пределах десятков миллионов километров от звезд-родительниц. Некоторые из них в несколько раз массивнее Земли и, скорее всего, плотнее, и поверхность у них раскаляется до температур, заметно превышающих точку плавления всех мыслимых скальных пород.

Внешние слои таких планет, лишенные защитной оболочки атмосферы, как у гигантов, превращаются в океан лавы, в вечную геенну огненную. Даже металлические составы вроде оксида алюминия испаряются с такой поверхности и снова конденсируются в пылинки, которые сдувает звездный ветер в числе прочего пара и дыма, словно чад от космической плавильной печи[102].

Возможно, эти миры когда-то напоминали наш Нептун, планету, покрытую толстым одеялом из первобытного газа и льдов. Не исключено, что на нынешних орбитах они очутились в результате миграций, а здесь защитный покров развеялся и испарился. А может быть, они всегда представляли собой просто небесные тела из камня и металла, которым не повезло оказаться в нынешних суровых условиях.

* * *

Итак, на этом конце экзопланетной гостиной, поближе к камину, сидят самые разные планеты. Однако всего в нескольких шагах от них расположились объекты еще более пестрые и ошеломительно-незнакомые. Например, на соседних креслах сидит группа из девяти крупных планет[103], окруживших одну звезду.

Поначалу кажется, будто в них нет ничего особенно необычного: ведь и вокруг нашего Солнца вращается восемь крупных планет плюс многочисленные транснептуновые тела вроде Плутона. Так что числом девять нас не удивишь. Мы и не удивились бы, если бы не одно обстоятельство: все эти планеты вращаются вокруг своей звезды (так вышло, что это звезда примерно той же массы и того же возраста, что и Солнце) на расстояниях меньше радиуса орбиты Юпитера.

Все эти планеты, кроме двух, которые лишь немногим массивнее Земли, крупные и тяжелые – в 10, 20, даже в 60 раз массивнее нашего домика. И хотя все они плотно упакованы в ужасно тесную на первый взгляд систему, там остается место кое для чего еще. В подобных местах процессы формирования планет идут бесконтрольно – планеты выковываются одна за другой, умудряясь как-то избегать губительных последствий гравитационных взаимодействий между ними. Прямо-таки хочется подойти к таким системам и сказать: «Молодцы, молодцы!»

Теперь уже очевидно, что планетные системы и сами планеты необычайно разнообразны. Это разнообразие поразительно и само по себе, однако заставляет задавать серьезные вопросы и о том, как мы оцениваем собственную вселенскую заурядность, собственную обычность. Мы уже не просто не единственная планетная система на свете – все обстоит гораздо хуже: очень многие из этих новых планет и систем пренебрегают всеми нашими представлениями о нормальности. В некоторых системах у планет экзотические орбиты. Гравитационная динамика так организовала движение этих объектов, что периоды обращения, планетные годы, синхронизированы в виде отношений простых чисел. Например, внутренняя планета делает два оборота ровно за то время, за которое внешняя совершает один оборот. Как будто их движение – часть точно настроенного музыкального инструмента, который меняет высоту звука в соответствии с идеальной гармонией.

Этот феномен называется резонанс. Движения планет по орбитам в таких системах подчиняются этому ритму, поскольку планеты постоянно оказываются в одном и том же месте в пространстве через равные промежутки времени. А в результате гравитационные поля воздействуют друг на друга одинаково, ритмически – и поддерживают синхронизацию. Во время формирования и в ходе истории этих систем орбиты планет медленно менялись и оказались пойманы в это состояние, общее для всех планет и вызванное взаимным гравитационным притяжением, без надежды на побег.

Хотя многочисленные примеры такого рода орбитального резонанса налицо даже в нашей Солнечной системе, у нас им подчиняются почти исключительно движения мелких планет и спутников, а движение крупных планет не знает резонанса, по крайней мере, в такой степени, в какой ему подвластны некоторые экзопланетные системы. Например, орбиты малой планеты Плутон и гигантского Нептуна подчиняются резонансу – на два плутоновских года приходится три нептуновских. Специфическим закономерностям подчиняются и некоторые спутники вокруг гигантских планет. Ио, Европа и Ганимед – спутники Юпитера – подчиняются закономерности в 4, 2 и 1 оборот за один и тот же период. Однако никакие крупные планеты в нашей системе не состоят друг с другом в подобных отношениях, по крайней мере, сейчас, поскольку есть некоторые свидетельства, что когда-то, быть может, четыре миллиарда лет назад, Юпитер с Сатурном танцевали танго с ритмом один к двум.

Казалось бы, необычное положение дел, и, тем не менее, подобные резонансы наблюдаются по всей нашей Галактике довольно часто. Но есть и еще одно свойство орбит многих планет, на котором нам совершенно необходимо остановиться, поскольку свойство это, с одной стороны, весьма часто встречается, а с другой – разительно отличается от устройства Солнечной системы. Мы обнаружили, что большинство планет нашей лиги вращаются не по кругу, а по плавным эллиптическим траекториям. Именно эти эллипсы обнаружил Кеплер, когда нашел объяснение непослушных закономерностей движения планет в Солнечной системе, именно они прямо следуют из закона всемирного тяготения Ньютона. Однако орбита самой Земли имеет лишь слегка эллиптическую форму – она отклоняется от правильной окружности лишь на пару процентов. В сущности, ни одна планета нашей системы не отклоняется от окружности больше чем на 10?%, кроме Меркурия, у которого отклонение составляет 20?%.

А если мы изучим лигу планет, то окажется, что 80?% экзопланет вращаются по орбитам с эллиптичностью более чем в 10?%. В сущности, более 25?% планет по всей Галактике вращаются по орбитам, которые на 50?% «эллиптичнее» круга. Иначе говоря, если мы захотим найти место Солнечной системы в лиге планет, нам придется потрудиться, чтобы найти местечко, зарезервированное для таких, как мы. Наша Солнечная система со своими относительно круглыми, но при этом большими орбитами находится в нижней четверти таблицы эллиптических орбит. Она явно выделяется в общем ряду.

Предпочтение эллиптической архитектуры орбит указывает на целый ряд весьма важных обстоятельств. Во-первых, оно предполагает, что большинство планетных систем, может быть, более 70?%, знавали периоды так называемой динамической активности. Это означает, что в прошлом планеты, скорее всего, были расположены иначе, временами проходили ближе друг к другу и сильнее притягивали друг друга. Со временем это может вызвать довольно заметные перемены и даже разрушение системы – они так и летают по ней и иногда находят себе другое место или вовсе теряются. К этому примечательному свойству я еще вернусь, когда мы заговорим об эволюции планетных орбит и о том, как она относится к принципу Коперника, однако оно свидетельствует о том, что история большинства систем оказалась куда более бурной, чем даже самые смутные времена в нашей Солнечной системе.

Еще одна черта эллиптических орбит, важная для нашей цели, – выяснения своего статуса во Вселенной – имеет отношение к климату. Многие потенциальные кузины Земли, как правило, подвержены значительно более резким перепадам количества энергии, которое они получают от родительских звезд в течение своего года. Эта энергия – важнейший фактор, определяющий обстановку на поверхности подобных планет, поэтому для нас она крайне важна.

Разнообразие в лиге планет этим не исчерпывается: орбиты – всего лишь одна из множества их отличительных черт. Очень многие системы содержат многочисленные экземпляры из другого класса планет, представителей которого вокруг Солнца нет вообще. Это планеты, которые укладываются в диапазон размеров от чуть больше массы Земли до пяти-десяти ее масс. Они – супер-Земли[104], и самые маленькие из них по крайней мере смутно напоминают нашу собственную планету, хотя на самом деле они не обязательно «землеподобны» (на этом качестве мы остановимся чуть позже). Более крупные варианты могут сильно отличаться от нас. У многих, по всей видимости, есть мощная атмосфера, вероятно, содержащая много водорода. Некоторые подобные массивные объекты, вероятно, покрыты слоем воды. Иногда они насквозь проморожены. А иногда целиком скрыты мировым океаном, достигающим невообразимой глубины – в десятки, а то и сотни километров, – где давление и температура так огромны, что химико-физическое поведение воды ничем не напоминает знакомые нам земные процессы. Есть и такие, где количество воды довольно скромно или ее вовсе нет. Зато на многих из них вовсю идут постоянные бурные вулканические процессы.

вернуться

102

См., например, S. Rappaport et al. Possible Disintegrating Short-Period Super-Mercury Orbiting KIC 12557548 // The Astrophysical Journal 752 (2012): 1.

вернуться

103

Признаюсь честно: мы еще пока не уверены, что обнаружили в точности такие системы, поскольку интерпретировать данные очень трудно. Тем не менее гипотеза о подобном наборе планет основана на реальных данных, приведенных в статье M. Tuomi. «Evidence for Nine Planets in the HD 10180 System // Astronomy and Astrophysics 543 (2012), no. A52:1–12.

вернуться

104

См., например, обзор N. Haghighipour. The Formation and Dynamics of Super-Earth Planets // Annual Review of Earth and Planetary Sciences 41 (2013): 469–95.