Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Острее шпаги - Казанцев Александр Петрович - Страница 1
Александр Петрович Казанцев
Острее шпаги
ОСТРЕЕ ШПАГИ
Пролог
Ни куб на два куба, ни квадрато-квадрат и вообще никакая, кроме квадрата, степень не может быть разложена на сумму двух таких же.
Мы с сыном, капитаном первого ранга, инженером, думали, что едем в купе вдвоем, но, когда в окне вагона замелькали трубы уральских заводов, с верхней полки вдруг спустился человек, назвавшийся Аркадием Николаевичем. Он оказался приятным собеседником, и я ему обязан всем, что дальше расскажу.
— А я думал, что вас нет, — простодушно признался я ему.
Аркадий Николаевич улыбнулся:
— Что ж, считайте меня «мнимой величиной»[1], есть в математике такое понятие. Величина существует, и в то же время она мнимая.
— Как это понять? «Мним»? — спросил мой Олег.
Наш попутчик рассмеялся:
— Вот не слышал такого слова. Впрочем, оно точно выражает суть явления, связанного с «машиной времени».
— Вы допускаете ее? — искренне удивился я.
— В свое время категорически отрицал, ибо она противоречит закону причинности. Не может следствие произойти раньше причины, ребенок появиться раньше матери. Но потом… потом нашел оправдание.
Мой Олег сочетал в себе эмоциональность с дотошностью:
— И допускаете, что можно перенестись в недавнее прошлое, встретиться с собственной бабушкой, когда она была хорошенькой, и жениться на ней, став самому себе дедом?
— Если бы это было возможно для мнима.
— То есть?
— У каждого есть своя «машина времени» — это его ВООБРАЖЕНИЕ. Оно способно перенести и в прошлое, и в будущее, и за тридевять земель. Можно «присутствовать» при исторических событиях, скажем, стоять рядом с сумрачным императором во время битвы при Ватерлоо, но лишь как мнимая величина.
— Как мним? А это здорово! — восхитился Олег. — И Наполеон, скрестив руки на груди, пройдет сквозь меня, как через облачко тумана!..
— Поскольку вы находитесь там как плод собственного воображения.
— Словом, «я тебя вижу, а ты меня нет!»
— Если хотите, то да.
— Но ведь вас-то мы видим, а вы назвали себя мнимой величиной.
— Я просто заметил на столике вашу книжку «Теорема Ферма» и вспомнил о своем недавнем путешествии на триста лет назад, когда я находился рядом с Ферма, как «мним».
— Что? — поразился я, косясь на попутчика.
Надо сказать, что у меня склонность к фантазии сочетается со скептицизмом. Мне доводилось встречаться с «марсианином», приходившим ко мне (как я четверть века назад описал в своем рассказе «Марсианин»), чтобы доказать свое неземное происхождение, и со свидетелями приземления из космоса «летающих тарелок», даже с Иисусом Христом, который явился ко мне сообщить об «открытии самого себя». Оказывается, любое желание одного техника по телевизорам из Львова телепатически передавалось окружающим и беспрекословно выполнялось.
Видимо, я был исключением, а потому мне с немалым трудом, но все же удалось убедить его прислать (но уже из Львова) подробное описание его «прозрения». Каюсь, я терзался тем, что упустил, быть может, интересного для науки человека-экстрасенса, наделенного необыкновенными способностями.
Аркадий Николаевич не был телепатом, но, логически мысля, угадал мои опасения:
— Уверяю вас, я совершенно в своем уме. Мне просто потребовалось для теории насыпей, над которой работал, доказательство Великой теоремы Ферма.
— xn + yn = zn — не имеет целочисленных решений при n › 2, — вмешался Олег. — Но этого доказать ученые не смогли в течение трехсот лет, даже создав новую отрасль математики.
— Алгебраическую теорию чисел. Вы правы. Ферма не знал ее, написав на полях «Арифметики» Диофанта: «Ни куб на два куба, ни квадрато-квадрат и вообще (заметьте, «вообще» — обобщение!) никакая, кроме квадрата, степень не может быть разложена (заметьте, «разложена»!) на сумму двух таких же. Я нашел удивительное доказательство этому, однако ширина полей не позволяет здесь его осуществить», — наизусть процитировал Аркадий Николаевич.
— Приведено в этой книжке, — показал я брошюру[2], захваченную Олегом в дорогу, — но дальше сказано: «Следует со всей решительностью предостеречь читателя искать элементарное доказательство теоремы Ферма. Можно быть уверенным, что это будет лишь ненужная трата труда и времени. Во всяком случае, ни издательство, ни автор книги «Теорема Ферма» М. М. Постников ни в какую переписку по поводу теоремы Ферма вступать не будут».
— Потому мне и нужен был сам Ферма.
— Зачем?
— Чтобы получить у него его доказательство.
— А было ли оно? — вступил Олег. — Ферма мог найти собственную ошибку, как находили впоследствии ошибки в несчетных доказательствах теоремы, а потому не записал и не опубликовал своего доказательства!
— Ферма вообще почти никогда не публиковал своих доказательств. Он сделал открытие в математике и как бы просил всех принять его вызов и повторить то, что удалось ему сделать.
— Кто же он? Шутник? «Принцесса Турандот от науки» или гордец с непомерным самомнением?
— Нет, нет! Просто скромный автор «математических этюдов», предлагаемых, подобно шахматным, для решения любителям математики.
— И что же? Доказывали его выводы? Решали эти этюды?
— Только Эйлеру в следующем столетии удалось это сделать, исключая Великую теорему, которую доказал только сам Ферма.
— Почему вы в этом уверены?
— Потому что он подсказывал, как это сделать.
— И вы у него это узнали? С помощью спиритического сеанса? — иронизировал Олег.
— Нет, зачем же? С помощью анализа его намеков, изучения других сделанных им открытий и с помощью воображения, которое способно все это объединить, создав образ Ферма.
— Конечно, «бессмертного академика», как это принято во Франции.
— Он даже не слышал о таком звании. Бессмертного, но не по выбору старцев в мантиях или по королевскому указу, а по сделанному им вкладу в науку, ощутимому и в наши дни.
— И у вас, говорите вы, состоялась встреча с ним? — наседал Олег.
— Я вообразил ее. А «беседа» с ним вылилась в чтение его трудов, изданных полвека спустя его сыном Самуэлем, тоже ученым и поэтом, как отец.
— Так! И что же вам сказал «при свидании» Ферма?
— В его отказе публиковать свои доказательства, пожалуй, было больше скромности, чем желания возвыситься над всеми, кому он предлагал найти им найденное. Но вместе с этой его чертой в нем можно увидеть и кое-что поглубже. Например, не без скрытого лукавства пишет он на полях книги Диофанта замечания, неоднократно употребляя частицу «ни». И вовсе не для усиления отрицания, а для того, чтобы подчеркнуть существование единого, общего способа разложения степени на сумму слагаемых той же степени.
— И есть такая формула?
— Конечно, есть! Я отыскал бином Ферма, несправедливо забытый. Отталкиваясь от него, я прошел путем Ферма к доказательству его Великой теоремы.
— Кажется, вы докажете сейчас если не теорему, то реальность своего путешествия к Ферма, — пошутил я.
— Пожалуй, результат математического вывода может служить таким доказательством.
— Так вы же сможете получить знаменитую премию, обещанную за доказательство теоремы Ферма!
Аркадий Николаевич усмехнулся:
— Это немецкий любитель математики Вольфскель в 1908 году завещал сто тысяч марок тому, кто докажет теорему Ферма.
1
v-1 (Прим. автора)
2
М., «Наука», 1978. (Прим. автора)
- 1/84
- Следующая