Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Открытие без границ. Бесконечность в математике - Грасиан Энрике - Страница 6
Изображённый на рисунке спусковой механизм позволял отмерять время намного точнее. При равномерном вращении колеса палета поочерёдно наклоняется то в одну, то в другую сторону. При каждом колебании она сдвигает спусковое колесо на один зуб, задавая ритм работы всего часового механизма.
Однако требовалось решить другую серьёзную задачу: темп времени, отсчитываемый часами, должен был оставаться неизменным. Проблема заключалась в том, что первые отмеряемые часы были длиннее последних, то есть по мере того, как верёвка подходила к концу, часы начинали спешить. Причина этого состояла в том, что маятники при движении описывали дугу окружности. Понять суть этой проблемы очень просто: достаточно бросить шарик внутрь полусферы и понаблюдать за его траекторией. Вы увидите, как размах колебаний шарика будет постепенно сокращаться, пока он не остановится (как если бы в часах кончилась верёвка). Очевидно, что чем меньше высота, с которой падает шарик, тем меньше времени ему потребуется, чтобы достичь центра полусферы (именно поэтому часы спешат). Часовые мастера того времени задавались вопросом: существует ли кривая, в которой угол наклона и расстояние до основания связаны так, что скорость падения и пройденный путь компенсируют друг друга? Для этой кривой время, за которое шарик достигнет её нижней точки, не зависит от того, с какой высоты он падает, поэтому ещё до своего открытия эта кривая получила название таутохроны, что означает по-гречески «равное время».
ЛЮБОПЫТНАЯ ИГРА
Представьте, что мы перевернули циклоиду и придали ей вращательное движение. Мы получим поверхность, образующей которой является циклоида. Это равносильно тому, как если бы мы попросили гончара изготовить чашку, форму которой определяла бы циклоида. Такие чашки, сделанные из пластика, продавали в 60-е годы в магазинах любопытных вещиц в США. Чем же примечательна подобная чашка? Если мы положим внутрь неё шарик и отпустим его, он достигнет дна за одно и то же время вне зависимости от того, с какой высоты будет скатываться. Интересно понаблюдать, как два шарика, один из которых расположен на самом краю чашки, а второй — на полпути ко дну, достигают дна одновременно.
В 1673 году Христиан Гюйгенс доказал, что циклоида является таутохронной кривой и определяется как траектория, описываемая точкой окружности при качении этой окружности вдоль прямой без проскальзывания.
На рисунке показано, как при вращении окружности образуется циклоида.
Гюйгенс понял, что если маятник будет двигаться по циклоиде, то высота, с которой он будет опускаться при колебаниях, перестанет иметь значение. Подобно шарику, скатывающемуся в чашке, маятник всегда будет достигать нижней точки за одинаковое время.
Но как добиться именно такого движения маятника? Решить эту задачу помогло одно из наиболее удивительных свойств циклоиды: эволюта циклоиды также является циклоидой. Понятие эволюты слишком сложно, чтобы объяснить его здесь, но понять его геометрический смысл нетрудно. Допустим, что мы разделили циклоиду пополам и соединили её половины в вершине А, как показано на рисунке.
Если мы возьмём нить заданной заданной длины, закрепим её конец в точке А и вытянем её так, что она всегда будет опираться на одну из ветвей циклоиды, то конец этой нити опишет кривую, которая также будет циклоидой. Гюйгенс нашёл способ изготовить маятник с незатухающими колебаниями, которые были ограничены двумя ветвями циклоиды. Схема этого маятника приведена на рисунке выше.
Хотя время нельзя считать физической величиной, подобно массе или температуре, его можно измерить, и изобретение Гюйгенса позволило в повседневной жизни считать время дискретным.
Ритм нашей жизни по-прежнему определяют звуки «тик-так», отмеряющие дискретные промежутки времени. Однако в научном мире интервал между «тик» и «так» удивительным образом сокращался. Говоря простым языком, он в бесконечное число раз меньше секунды. Современные атомные часы отмеряют промежутки времени в 1/9192631770 секунды. Насколько же дискретны эти часы!
Парадоксы Зенона
Дискретное состоит из элементов, отдельных единиц. А непрерывное? Кажется логичным считать, что непрерывное не может иметь подобной структуры, так как единичные элементы можно разделить, а между двумя соприкасающимися элементами не может находиться ничего — если бы там что-то находилось, его также можно было бы разделить на части. Если мы поразмыслим над этим хотя бы немного, то увидим, что понятие бесконечно малой величины вплотную подводит нас к понятию непрерывности. Размышления о природе непрерывного занимали важное место в греческой философии, одним из самых заметных представителей которой был Зенон. В своих известных парадоксах он продемонстрировал непрочность любой теории, в которой использовались бесконечно большие или бесконечно малые величины.
Главной целью рассуждений Зенона было подтвердить правильность теорий Парменида (предполагается, что он был учителем Зенона), который утверждал, что всё сущее является неделимым как в пространстве, так и во времени. Кроме того, Зенон также хотел поспорить с пифагорейцами, считавшими порождением всего сущего «непрерывный поток».
Следствием невозможности разделить время на промежутки стала невозможность движения, которое понималось как последовательность участков пространства, которые занимал объект в течение некоторого периода времени. Идея Зенона заключалась в следующем: если принять верной гипотезу, противоположную гипотезе Парменида, мы получим противоречие столь абсурдное, что оно будет абсолютно неприемлемо с позиций здравого смысла. Этот логический метод называется доведением до абсурда, и Зенон был если не создателем, то по меньшей мере одним из первых, кто широко использовал его.
Суть метода заключается в следующем: предполагается, что определённая гипотеза верна, и на её основе делается ряд логических умозаключений, которые ведут к очевидно ложному результату, на основании чего делается вывод о ложности исходной гипотезы. В терминах логики в основе этого метода лежат следующие соотношения:
И=>И
Л=>Л
Л=>И,
где И — ИСТИНА, Л — ЛОЖЬ, => — логическая связка, означающая «если… то». Иными словами, И=>И означает, что из истинного утверждения следует другое истинное утверждение, таким образом, истинная предпосылка никогда не может вести к ложному следствию. Если же вывод ложный, то исходное положение неверно. С помощью этих логических умозаключений, лежащих в основе метода доведения до абсурда, можно было доказать ложность некоторого утверждения, что и делал Зенон в своих парадоксах.
Пифагорейцы считали, что реальность состоит из точек: точки образуют прямые, прямые — поверхности, поверхности — трёхмерные тела. Зенон не принимал этого мнения, указывая, что поскольку точки не имеют размеров, то всё составленное из них также не может иметь размеров, то есть не может существовать. Кроме того, всё составленное из точек можно разделить на части бесконечное число раз, что ведёт к множеству абсурдных ситуаций.
ПАРАДОКСАЛЬНЫЙ ОБРАЗ МЫШЛЕНИЯ
Парадокс — это особая форма аргументации. Его суть заключается в том, что некоторое утверждение принимается в качестве исходного, после чего путём корректных логических рассуждений из него выводится противоречащий здравому смыслу результат, тем самым правильность исходного утверждения ставится под сомнение. Логические парадоксы, впервые появившиеся в элейской школе, основывались на логических высказываниях, которые могли быть как истинными, так и ложными. Один из популярнейших парадоксов древности — так называемый «парадокс лжеца», изложенный Эпименидом Критским. Этот парадокс гласит: «Все критяне — лжецы».
Эпименид не может говорить правду, так как он критянин, но в то же время если он лжёт, его высказывание будет верным, и в результате возникает противоречие.
- Предыдущая
- 6/29
- Следующая