Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Естествознание. Базовый уровень. 10 класс - Сивоглазов Владислав Иванович - Страница 52


52
Изменить размер шрифта:

Рис. 118. Алхимические символы элементов

На протяжении веков алхимики утверждали, что достаточно приложить ещё немного усилий, и правильно подобранная смесь ртути, серы, олова, соли и других подобных веществ превратится в золото. Однако все эти многовековые попытки закончились неудачей, причина которой теперь нам известна.

Дело в том, что во времена Средневековья и раннего Возрождения не различали понятия «вещество» и «элемент». Теперь мы знаем, что в природе существуют виды атомов – химические элементы, простые вещества, состоящие из атомов одного элемента, и химические соединения, молекулы которых состоят из атомов разных элементов, соединённых химическими связями. Химические связи могут возникать и разрываться в процессе химических реакций, поэтому возможны превращения одних соединений в другие. Но для того чтобы осуществить превращение одного элемента в другой, необходимо вмешаться в строение его атомного ядра, а такое вмешательство невозможно при обычной химической реакции. Поэтому сколько бы мы ни нагревали смеси различных элементов, ни прибавляли к ним соли и кислоты, нового химического элемента, серебра или золота, из них не получится. Для того чтобы превратить один элемент в другой, требуется изменить строение его атомного ядра, т. е. осуществить ядерную реакцию (рис. 119).

Несмотря на то что сильное взаимодействие очень прочно скрепляет нуклоны, в некоторых случаях атомное ядро может быть разрушено. Для того чтобы вызвать распад ядра, требуется затратить огромную энергию. Когда происходит ядерный распад, ядро теряет протоны или электроны, или и то и другое. В результате этого один элемент может превращаться в другой. Во время распада происходит испускание альфа-, бета– или гамма-излучения, поэтому этот процесс всегда сопровождается радиоактивным излучением и называется также радиоактивным распадом. В зависимости от того, какие частицы испускает атом при распаде, различают альфа-распад, бета-распад и гамма– распад.

Альфа-распад.

При альфа-распаде происходит освобождение альфа-частиц, которые представляют собой ядра гелия, т. е. состоят из двух протонов и двух нейтронов. После потери этих частиц атом данного элемента превращается в атом другого элемента, порядковый номер которого в периодической таблице оказывается на два номера меньше, чем у исходного.

Рис. 119. Схема ядерной реакции

Так, например, уран, имеющий порядковый номер 92 и атомную массу 238, превращается в торий с порядковым номером и атомной массой 90 и 234 соответственно.

Бета-распад.

Бета-распад представляет собой другой процесс, вызывавший в течение долгого времени недоумение. Как вы уже знаете, бета-лучи, открытые Резерфордом, представляют собой поток электронов. Сразу же было обнаружено, что это не те электроны, из которых построена электронная оболочка атома. Они возникают только при ядерном распаде и, несомненно, испускаются ядром. Кроме того, энергия их испускания меняется не скачками, а непрерывно, т. е. эти электроны не находятся на квантовых орбитах. Откуда же они берутся?

Выяснилось, что в процессе ядерных реакций нейтрон может распадаться на протон и электрон. Отрицательно заряженный электрон при этом вылетает из атомного ядра, а нейтрон, потеряв отрицательный заряд, становится протоном. Очевидно, что при этом масса ядра не изменяется, а его положительный заряд становится на единицу больше. Следовательно, также на единицу увеличивается порядковый номер элемента. Одним из самых простых примеров бета-распада служит превращение изотопа водорода трития в инертный газ гелий, лежащее в основе термоядерных реакций. Как вы знаете, ядро трития состоит из одного протона и двух нейтронов, и поэтому тритий, как и остальные два изотопа водорода, имеет порядковый номер 1. Если в результате бета-распада и испускания электрона один из нейтронов превращается в протон, то образуется другой элемент – гелий, имеющий порядковый номер 2, так как он содержит два протона и один нейтрон.

При исследовании бета-распада обнаружился ещё один интересный факт. Оказалось, что покидающий ядро электрон обладает меньшей энергией, чем следовало из проведённых расчётов. Это настолько смущало физиков, что под сомнение был поставлен даже закон сохранения энергии. Однако вскоре выяснилось, что недостающую энергию уносит ещё одна вылетающая вместе с электроном частица. Эта частица, получившая название нейтрино, обладает целым рядом интересных в теоретическом и важных в практическом отношении свойств. Поскольку она не имеет электрического заряда, на неё не действует электромагнитное поле. Кроме того, она не участвует в сильном взаимодействии. На неё действует только слабое воздействие и гравитация, которую ввиду ничтожной массы нейтрино (во много раз меньшей, чем масса электрона) можно практически не принимать в расчёт. Поэтому нейтрино обладает необычайной проницаемостью, оно способно пролетать огромные расстояния, почти не поглощаясь никаким веществом. Это свойство очень важно для развивающейся науки – нейтринной астрономии. Поскольку звёзды в числе других излучений испускают и потоки нейтрино, наблюдение за сверхдальними объектами с помощью нейтринных телескопов может позволить получить очень ценные сведения о строении Вселенной.

Электроны, протоны, нейтроны и нейтрино являются представителями большого класса объектов, которые называют элементарными частицами. Эти частицы либо входят в состав атома, либо могут возникать в нём при различных процессах из других элементарных частиц. Своё название они получили потому, что их считали окончательно неделимыми составляющими атома. В настоящее время известно более 300 элементарных частиц, и их число продолжает расти. Большинство таких частиц нестабильны, т. е. очень быстро распадаются, образуя другие элементарные частицы. Поэтому для их обнаружения и тем более для исследования их свойств требуются очень точные приборы. До середины XX в. элементарные частицы обнаруживали в основном в космических лучах, однако сейчас их исследование проводится с помощью специально созданных ускорителей. В них частицы можно разогнать до огромных скоростей, сопоставимых со скоростью света, а затем заставить их сталкиваться и наблюдать происходящие при этом превращения.

Гамма-распад

Исходя из того что при ядерном распаде происходит превращение одних частиц в другие, можно объяснить процесс гамма-распада. При таком распаде наблюдают электромагнитное излучение очень высокой частоты, которое, как вам известно, называют гамма– излучением. Возникает оно потому, что в результате альфа– и бета– распада может выделиться энергия, которой не хватит для того, чтобы образовать новые частицы. Для того чтобы освободиться от этой лишней энергии, атом испускает её в виде гамма-квантов.

Строение элементарных частиц.

В ходе развития теоретической физики выяснилось, что и элементарные частицы не являются на самом деле «элементарными», т. е. неделимыми. Некоторые из них, например протоны и нейтроны, состоят из ещё более мелких частиц, получивших название кварки. Размер кварка примерно в 20 тыс. раз меньше, чем размер протона. Главная особенность кварков заключается в том, что их, во всяком случае до сих пор, не удалось обнаружить вне элементарных частиц. Хотя кварки можно наблюдать только в группе, образующей какую-либо частицу, их удалось исследовать и вычислить физические свойства. Правда, для описания этих свойств не хватает физических терминов и не существует никаких аналогий с чем-либо известным, поэтому используются такие странные термины, как «цвет» и «аромат». (Кстати, само слово «странность» тоже используется в квантовой физике для характеристики элементарных частиц.) Однако, несмотря на неясность этих понятий, с ними можно производить расчёты, весьма точно описывающие свойства элементарных частиц.