Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Естествознание. Базовый уровень. 10 класс - Сивоглазов Владислав Иванович - Страница 39
Значит, расстояние h тело пролетит за время t = v?2gh. Двигаясь равноускоренно, тело приобретёт за это время скорость v = gt = gv?2gh. Его кинетическая энергия, следовательно, будет равна mv 2/2 = mgh. Это как раз и есть та величина, на которую уменьшилась потенциальная энергия. А это означает, что суммарная энергия падающего тела не изменилась. Если первоначальная высота, на которой находилось тело, была h, то кинетическая энергия этого тела в момент падения будет равна mgh, т. е. его начальной потенциальной энергии.
Но вот тело достигло низшей точки, потеряв всю свою потенциальную энергию. Что будет с ним дальше? Для начала рассмотрим колебание маятника, с которым мы познакомились в предыдущих параграфах. Отведём маятник в сторону, а затем отпустим (рис. 89). Поскольку он находится в поле притяжения Земли, он обладает потенциальной энергией, за счёт которой начнёт движение вниз. Когда он достигнет самой низкой точки, его потенциальная энергия будет исчерпана, но он продолжит движение, набирая при этом высоту. Причиной этого является кинетическая энергия, в которую во время движения вниз перешла его потенциальная энергия. Поднимаясь вверх, маятник совершает работу против силы тяжести.
Рис. 89. Схема преобразования энергии во время качания маятника. Отведём маятник в сторону: потенциальная энергия (ПЭ) максимальна, кинетическая энергия (КЭ) равна нулю (А). Отпустим маятник: при движении вниз ПЭ будет уменьшаться, а КЭ – увеличиваться (Б). В самой нижней точке ПЭ исчерпана, а КЭ максимальна (В). На движение против силы тяжести расходуется КЭ, при этом увеличивается ПЭ (Г)
На совершение этой работы расходуется его кинетическая энергия, которая по мере движения переходит в потенциальную энергию, так как маятник поднимается всё выше. Сумма обеих энергий всё время остаётся постоянной. Когда вся кинетическая энергия будет израсходована, она целиком превратится в потенциальную, которая заставит маятник двигаться вниз в обратном направлении. Если на пути маятника не возникает никаких помех его движению, он будет качаться вечно, так как его энергия всегда будет оставаться неизменной.
Обратим теперь внимание на выражение: «Если на пути не возникает никаких помех движению…» Мы знаем, что на самом деле так никогда не бывает, и всякий маятник, если не поставлять ему дополнительной энергии, т. е. не совершать над ним работы, когда-нибудь непременно остановится. Пружинные часы надо регулярно заводить. Электрические могут ходить дольше, но рано или поздно батарейка в них «сядет». Причиной этого является то, что в реальных механических движениях никогда не бывает случаев, когда не возникает никаких помех движению. Любое такое движение встречает сопротивление окружающей среды. Оно может быть большим или меньшим в зависимости от того, как ведёт себя эта среда. В случае маятника такое сопротивление оказывает воздух. Сталкиваясь с его молекулами, маятник передаёт им часть своей кинетической энергии и постепенно прекращает качаться. Закон сохранения энергии при этом не нарушается, так как потерянная энергия не исчезает, а приобретается молекулами воздуха.
Теперь рассмотрим другой случай. Предмет упал с некоторой высоты на поверхность, которую мы назвали нулевой, и остановился. Теперь у него нет ни потенциальной, ни кинетической энергии. Куда она пропала? Вероятно, вы не раз наблюдали всевозможные случаи падения и знаете, что существует много вариантов для обнаружения потерянной энергии. Если камень упадёт в воду, вверх полетят брызги, т. е. капли воды, получившие от камня кинетическую энергию (рис. 90). Если на твёрдый пол упадёт чашка, она разобьётся, израсходовав свою кинетическую энергию на разрыв связей внутри неё самой. Но ведь возможен и случай, когда в результате падения предмета на твёрдую поверхность вроде бы ничего не происходит. Со стола на пол упала книга. Внешне ни с ней, ни с полом ничего не произошло. Куда же делась её энергия, которой она, несомненно, обладала до и во время падения? Она передалась молекулам, из которых состоят и книга, и пол.
Рис. 90. Если предмет упадёт в воду, вверх полетят капли воды, получившие от упавшего предмета кинетическую энергию
В результате некоторые молекулы изменили своё положение: при очень тщательном микроскопическом исследовании можно обнаружить небольшие вмятины и царапины. Но у большинства молекул эта энергия вызвала небольшие изменения в скорости их движения. Можно ли это как-нибудь обнаружить? Оказывается, можно, если очень точно измерить температуру книги и пола до и после падения. И то и другое немного нагреется. Это изменение температуры слишком мало для того, чтобы его можно было почувствовать рукой, но очень чувствительный термометр его обнаружит. Кинетическая энергия упавшей книги перешла в тепловую энергию, а именно в кинетическую энергию движения молекул и потенциальную энергию взаимодействия молекул пола и книги.
1. Как изменяются потенциальная и кинетическая энергия маятника в процессе его колебания?
2. В какие виды энергии может переходить кинетическая энергия упавшего тела?
3. Какая энергия определяет температуру тела?
Налейте в сосуд немного воды и измерьте её температуру. Затем в течение довольно длительного времени тщательно перемешивайте воду с помощью какой-нибудь электрической мешалки. Вновь измерьте температуру воды. Сравните и объясните полученные результаты.
§ 35 Трение и сопротивление среды
Процесс перехода механической энергии в тепловую легче всего проследить, наблюдая один из самых распространённых видов сопротивления среды, который называют трением. При взаимном движении тел выступы и впадины на их поверхностях цепляются друг за друга и мешают движению. Даже на самых гладких поверхностях есть микроскопические неровности. В результате движущимся телам приходится ломать эти неровности, т. е. разрывать связи между молекулами трущихся поверхностей. На это расходуется кинетическая энергия движущегося тела. В результате его движение замедляется и рано или поздно совсем прекращается. Одновременно можно заметить, что трущиеся поверхности нагреваются. Это знали ещё древние люди, не имевшие никакого представления о законе сохранения энергии, но умевшие добывать огонь с помощью трения. С этим же приходится считаться и тем, кто имеет дело с современными механизмами, например с автомобилями. Если кинетическую энергию молекул двигателя не передать молекулам воды или другой жидкости, а затем молекулам воздуха, мотор вскоре перегреется.
Если бы в природе не существовало трения, наша жизнь была бы совершенно иной. Вернёмся к случаю, о котором мы говорили, когда начинали разговор об энергии. Нам надо передвинуть шкаф массой в 100 кг на расстояние 5 м. Какую для этого надо приложить силу и какую затратить работу, если предположить, что трение отсутствует? Начнём с силы. Для того чтобы шкаф начал двигаться, ему надо придать ускорение. Как мы знаем, ускорение равно действующей силе, делённой на массу, а это значит, что, как бы ни мала была приложенная сила, шкаф всё равно будет двигаться с ускорением до тех пор, пока мы его толкаем. Можно даже не толкать его постоянно, а толкнуть всего один раз, причём с какой угодно малой силой, а затем оставить в покое. Подсчитаем, что будет, если надавить на него в течение одной миллисекунды с силой в одну миллионную ньютона (это сила, которая требуется для того, чтобы поднять груз массой в один миллиграмм, мы её просто не заметим), а затем оставить в покое. Толчок придаст ему импульс, равный произведению силы на время её действия. Шкаф приобретёт тот же импульс и начнёт двигаться со скоростью, равной величине импульса, делённой на массу шкафа. Вычислим, какова будет эта скорость: 10-6 Н 10-3 с / 100 кг = 10-7 м/с. То есть скорость, с которой будет двигаться шкаф, составит 0,1 мкм/с. Это, конечно, скорость небольшая, однако через пятьдесят миллионов секунд, т. е. немного более чем через полтора года, шкаф без всяких дополнительных усилий окажется там, куда мы хотели его поставить. Правда, он на этом не остановится, и для того чтобы оставить его стоять там, где мы этого хотим, придётся опять приложить ту же силу, только в противоположном направлении.
- Предыдущая
- 39/86
- Следующая