Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Естествознание. Базовый уровень. 10 класс - Сивоглазов Владислав Иванович - Страница 19
Что же такое скорость? В случае равномерного движения объяснить это просто. Скоростью называется отношение пройденного пути ко времени, за которое он был пройден. На графике равномерного движения скорость равна тангенсу угла, образованного осью абсцисс и прямой линией – графиком зависимости пути от времени. Но как быть в тех случаях, когда движение не является равномерным, например при равноускоренном движении, график которого, как мы знаем, имеет вид параболы? Глядя на график, легко убедиться в том, что угол наклона параболы, а следовательно, и его тангенс постоянно меняются. Что же в этом случае считать скоростью? Попробуем рассуждать так. Пусть в нашем опыте (точнее, в опыте Галилея) шар за 4 с прокатился 16 м. Можно ли считать, что его скорость равна 16 м / 4 с = = 4 м/с? Это можно сделать приблизительно, сказав, что средняя скорость за всё время пути была 4 м/с. Но такой ответ не будет точным, так как скорость постоянно менялась. Давайте разделим процесс движения на две равные части и подсчитаем скорость отдельно за первые две и за вторые две секунды. У нас получится, что в начале шар катился со скоростью 5 м / 3 с = 1,67 м/с, а в конце его скорость составила 25 / 7 = 3,57 м/с. Мы определили скорость для начального и для конечного этапа движения и увидели, что она увеличивалась. Но на протяжении этих этапов она ведь тоже менялась. Разделим период движения на четыре интервала и получим 1, 2, 3 и 4 м/с. Но ведь шар катился не рывками: внутри этих интервалов его скорость тоже менялась. Если мы используем вместо пульса очень точные часы, мы можем делить время на сколь угодно малые интервалы и получать всё более точные значения скорости в данный момент времени. В идеале эти интервалы можно сделать бесконечно малыми, и тогда мы определим значение мгновенной скорости.
Если обозначить пройденный путь как ?S, а время, в течение которого он был пройден, как ?t, то скорость в среднем будет равняться ?S/?t, а мгновенная скорость получится, если AS и At сделать бесконечно малыми. Математически это называется пределом отношения ?S/?t, когда At стремится к нулю, или производной пути по времени.
Если сотрудник ДПС останавливает водителя и говорит, что его автомобиль двигался со скоростью 100 км/ч, то это не значит, что тот проехал за последний час сто километров. Просто радар полицейского, как и спидометр автомобиля, показывает мгновенную скорость. Она означает, что, если водитель будет продолжать ехать с той же скоростью в течение часа, он проедет ровно сто километров.
Надо сразу же сделать одно замечание, которое может показаться несущественным в обыденной жизни. Однако в теоретической физике эта деталь имеет большое значение. Что значит тело движется равномерно? Ведь тело может быть большим и сложно организованным. Оно может во время движения менять свою форму, сжиматься или вращаться. Вот мимо нас бежит собака. Вроде бы она бежит с постоянной скоростью, т. е. равномерно. Но в то же время её ноги движутся то вперёд, то назад, голова иногда оказывается впереди передних лап, а иногда сзади них. Движение чего мы должны учитывать? В уравнениях физики рассматривается движение не всего тела, а только одной точки, являющейся как бы его представителем. Скорость этой точки и принимается за скорость всего тела. Когда катится колесо, его точки не движутся по прямой, а описывают круги, т. е. вращаются, кроме одной – центра, которая движется прямолинейно. Вот её скорость и считается скоростью движения колеса. У собаки тоже можно выделить точку где-нибудь в её центре, которая будет двигаться прямолинейно. Конечно, если мы считаем, что в движущемся предмете ничто не вращается и не качается, мы можем судить о его движении по любой точке. Когда мы говорим, что автомобиль движется со скоростью 100 км/ч, то неважно, имеется в виду его радиатор или багажник. Представление о замене предмета движущейся точкой служит одним из примеров научной абстракции, которая на первый взгляд искажает действительность, а на самом деле позволяет делать точнейшие расчёты движения.
Скорость, как и пройденный путь, является вектором. Если тело движется равномерно в каком-то направлении со скоростью v, то можно определить проекции этой скорости на оси координат. Предположим, мотор движет лодку вдоль береговой полосы на восток со скоростью 10 км/ч, а течение сносит её на север со скоростью 5 км/ч (рис. 41). Как будет двигаться лодка в действительности? Будем считать направление на восток осью х, а направление на север осью у. Отложим по этим осям компоненты скоростей, соответственно 10 и 5 км/ч, и построим по этим компонентам вектор так же, как мы это делали в § 13.
Рис. 41. Как будет двигаться лодка, если мотор направляет её вдоль береговой полосы на восток со скоростью 10 км/ч, а течение сносит на север со скоростью 5 км/ч?
Мы видим, что курс лодки лежит между востоком и северо-востоком, а тангенс угла между этим курсом и направлением на восток равен отношению скорости течения к скорости, развиваемой мотором, т. е. 0,5. Этому тангенсу соответствует угол, равный примерно 27°. Теперь определим скорость, с которой лодка удаляется от пристани, которую мы будем считать точкой отсчёта. Она определяется модулем вектора скорости, который, как мы знаем, находится при помощи теоремы Пифагора. Следовательно, скорость лодки относительно пристани равна квадратному корню из (102 + 52) или около 11,2 км/ч.
1. Что такое равномерное движение?
2. Что такое равноускоренное движение?
3. Почему скорость является вектором?
4. Что такое мгновенная скорость?
1. Повторите опыт Галилея. Пустите шарик катиться вниз по наклонному жёлобу, на который нанесены деления (рис. 42). Пусть один из участников эксперимента отсчитывает секунды, а второй одновременно называет номера отметок, которые пересекает шарик. Измените наклон жёлоба и повторите наблюдение. Теперь толкните шарик так, чтобы он катился вверх по наклонному жёлобу, и замерьте изменение скорости его движения. Результаты нанесите на график.
Рис. 42. Воспроизведите опыт Галилея
2. Приведите примеры ситуаций, где может пригодиться знание о том, что скорость – это вектор.
3. Придумайте задачу на определение траектории движения парашютиста при разной скорости и направлении ветра. Обменяйтесь этими задачами с одноклассниками и решите их.
4. Используя дополнительные источники информации, выясните, каким прибором измеряют мгновенную скорость движения корабля. Движение относительно чего – воды или дна моря – показывает этот прибор?
5. Как с помощью рулетки (дальномера) и секундомера определить мгновенную скорость тела при равномерном движении?
§ 17 Относительное движение
Алиса в недоумении огляделась.
– Что это? – спросила она. – Мы так и остались под этим деревом! Неужели мы не стронулись с места ни на шаг?
– Ну конечно, нет, – ответила Королева. – А чего ты хотела?
– У нас, – сказала Алиса, с трудом переводя дух, – когда долго бежишь со всех ног, непременно попадаешь в другое место.
– Какая медлительная страна! – сказала Королева. – Ну а здесь, знаешь ли, приходится бежать со всех ног, чтобы только остаться на том же месте. Если же хочешь попасть в другое место, тогда нужно бежать по меньшей мере вдвое быстрее!
- Предыдущая
- 19/86
- Следующая