Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
По ту сторону кванта - Пономарев Леонид Иванович - Страница 25
Разгадку такой устойчивости таблицы удалось найти лишь после работ Резерфорда. В том же 1911 году, когда Резерфорд обнародовал свою планетарную модель атома, датчанин Ван дер Брок написал в немецкий журнал короткую заметку, в которой высказал предположение:
порядковый номер элемента в таблице Менделеева равен заряду ядра его атомов.
Два года спустя, изучая рентгеновские спектры различных элементов, эту гипотезу доказал один из лучших учеников Резерфорда Генри Гвин Джеффрис Мозли (1887–1915). Работа Мозли стала главным событием в физике даже в те полные открытий годы. Ему не удалось её завершить: в августе 1915 года он был убит наповал в Греции в окопах Галлипольского полуострова.
В чём суть и важность этих открытий?
Прежде всего из них следует, что элементы в таблице расставлены верно.
Кроме того, они доказывают, что все элементы уже открыты, за исключением тех, для которых в таблице оставлены пустые места.
Такая окончательность утверждений всегда обладает необъяснимой притягательной силой. Она становится особенно ценной, когда речь идёт о системе мира. После работ Мозли система химических элементов была наконец установлена окончательно и оставалось только понять её особенности.
Природа позаботилась о том, чтобы как можно дальше упрятать свои главные свойства от глаз естествоиспытателей: заряд ядра атома надёжно укрыт шубой из электронов и недоступен измерению никакими химическими и большинством физических методов. Это свойство атомов нащупали только после того, как начали обстреливать их такими снарядами, как ?-частицы. Вместе с тем именно это так глубоко запрятанное свойство определяет структуру атома и все наблюдаемые свойства элементов, состоящих из этих атомов. И если мы хотим по-настоящему узнать атом, то вначале должны докопаться до его ядра. (Как в сказке о Кащее Бессмертном: высоко на горе растёт дуб, на дубу — сундук, в сундуке — заяц, в зайце — утка, в утке — яйцо, в яйце — игла, а в кончике той иглы — жизнь и смерть Кащея.)
В силу каких-то глубоких причин, которые мы пока не вполне знаем, заряд ядра атома примерно вдвое меньше, чем его атомный вес. Поэтому, располагая элементы в порядке возрастания их атомных весов, мы более или менее правильно выстроим их и в порядке возрастания зарядов ядер их атомов. Менделеев, конечно, не знал о существовании ядер, но он почувствовал, что у атомов есть ещё какое-то свойство, более глубокое, чем атомный вес, и поэтому, располагая элементы в таблице, доверял больше интуиции, чем атомным весам. Он как бы заглянул под электронную оболочку атомов, пересчитал там положительные заряды в ядре и затем это число присвоил элементу, назвав его порядковым номером. Очевидно, порядковый номер — внутренняя характеристика элемента, и, конечно, она не зависит от нашего произвола, как, например, номер дома на улице. (Если продолжить нашу аналогию с детской игрой-мозаикой, то можно сказать, что все её кубики в действительности оказались пронумерованными. Только номера эти были запрятаны внутри кубиков.)
Теперь наконец можно дать точное определение элемента.
Элемент — это вещество, состоящее из атомов с одинаковым зарядом ядра.
Нам осталось выяснить последнее: почему монотонное изменение заряда ядра атомов приводит к периодическим изменениям их химических свойств? Изменяются при этом не только химические, но и физические свойства: удельный вес, твёрдость и даже агрегатное состояние. Например, элементы с порядковыми номерами 2, 10, 18, 36 — это газы гелий, неон, аргон, криптон, получившие название благородных за свою неспособность вступать в обычные химические реакции. Но если заряд ядер этих атомов увеличить всего на единицу, то мы получим элементы 3, 11, 19, 37 — щелочные металлы литий, натрий, калий, рубидий, которые никак не похожи на соседние газы ни по физическим, ни по химическим свойствам. Например, натрий и калий так легко вступают в химические реакции, что их нельзя держать на открытом воздухе — они там самовоспламеняются.
Очевидно, причину периодического изменения свойств элементов следует искать не в ядре, а в окружающей его электронной оболочке. Первая мысль, при этом возникающая, состоит в том, что электроны вокруг ядра расположены не беспорядочно, а слоями-оболочками. Начало заполнения новой оболочки совпадает с началом нового периода, и как раз в этот момент скачком изменяются химические свойства элементов. После работ Бора подобная мысль казалась очень естественной, и он сам же её впервые и высказал.
Однако приведённые наблюдения не подсказывают способа вычислить длину периода. На первый взгляд длина периодов в таблице меняется весьма прихотливо: в I периоде — два элемента, во II и III — восемь, в IV и V — восемнадцать, в VI — тридцать два. Но ещё в 1906 году Иоганн Ридберг заметил, что ряд чисел 2, 8, 18, 32 подчиняется простой формуле: 2•n2. Эту закономерность удалось объяснить Паули только в 1924 году, после открытия им принципа запрета.
Ход рассуждений Паули легко понять. В самом деле, движение электрона в атоме описывается четырьмя квантовыми числами, о которых мы подробно говорили в предыдущей главе и которые напомним теперь ещё раз:
n — главное квантовое число, которое может принимать значения 1, 2, 3, …;
l — орбитальное квантовое число, которое при заданном n принимает значения 0, 1, 2, …, (n?1);
m — магнитное квантовое число; при заданных n и l оно пробегает ряд значений ?l, ?(l?1), …, ?1, 0, 1, …, (l?1), l, — всего 2•l + 1 значений;
S — спиновое квантовое число, принимающее значения +? и ??.
Принцип запрета Паули гласит:
В атоме не может быть двух электронов с одинаковыми квантовыми числами.
Поэтому на оболочке с порядковым номером n может поместиться только ограниченное число электронов. Например, на первой оболочке умещаются только два электрона. В самом деле, если главное квантовое число n = 1, то для орбитального момента допустимо только одно значение l = 0, а следовательно, и магнитное квантовое число m = 0; спин электрона не зависит от других квантовых чисел и может принимать два значения S = +? и S = ??. В соответствии с этим на первом квантовом уровне могут поместиться только два электрона с квантовыми числами: (n = 1; l = 0; m = 0; S = +?) и (n = 1; l = 0; m = 0; S = ??). Рассуждая точно так же, можно убедиться, что на второй оболочке умещается 8 электронов, на третьей — 18 и вообще на оболочке с главным квантовым числом n помешается 2•n2 электронов. То есть число электронов на заполненных оболочках атомов равно длине периодов таблицы Менделеева.
Чтобы нагляднее уяснить себе причину появления этих чисел, представьте, что вам надлежит заселить жилой квартал, в котором n домов, пронумерованные числом l = 0, 1, 2, …, (n?1), причём в доме с номером l только (2•l + 1) квартир. Если в каждую квартиру запрещено поселять больше двух жильцов, то во всём квартале поместится 2•n2 человек и не более.
Каждый период в таблице Менделеева начинается щелочным металлом и заканчивается инертным газом. Химические свойства этих элементов резко различны. Теперь легко понять и причину их различия. Инертные газы — гелий, неон, аргон и т. д. — отличаются от всех остальных элементов тем, что у них оболочки полностью заполнены.
Атомы щелочных металлов: лития, натрия, калия и т. д., которые в таблице расположены следом за инертными газами, содержат по одному электрону в следующей, более высокой оболочке. Эти электроны связаны с ядром много слабее, чем остальные, и поэтому атомы щелочных металлов легко их теряют и становятся положительными однозарядными ионами: Li+, Na+, K+ и т. д.
- Предыдущая
- 25/63
- Следующая