Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Паутина жизни. Новое научное понимание живых систем - Капра Фритьоф - Страница 31


31
Изменить размер шрифта:
Нелинейность

Итак, к концу XIX века ученые разработали два различных математических инструмента для моделирования естественных явлений — точный (детерминистские уравнения движения для простых систем) и уравнения термодинамики, основанные на статистическом анализе усредненных величин для сложных систем.

И хотя эти два подхода совершенно различны, есть у них и общая черта: они используют линейные уравнения. Ньютоновы уравнения движения носят весьма общий характер и применимы как для линейных, так и для нелинейных явлений; в действительности же нелинейные уравнения получаются гораздо чаще, можно сказать на каждом шагу. Однако, поскольку они обычно слишком сложны для решения и связаны с хаотической, на первый взгляд, природой соответствующих физических явлений — например, с турбулентными потоками воды и воздуха, — ученые, как правило, избегают изучения нелинейных систем6.

Поэтому, как только нелинейные уравнения появлялись, их тут же «линеаризовали», т. е. заменяли линейными приближениями. В результате, вместо того чтобы описывать явления во всей их сложности, уравнения классической науки имели дело с малыми колебаниями, неглубокими волнами, небольшими изменениями температуры и т. д. Как заметил Ян Стюарт, эта привычка укоренилась настолько, что многие уравнения линеаризировались уже в ходе составления, поэтому в учебники даже не включались полные нелинейные версии. И даже у большинства ученых и инженеров сложилось убеждение, что фактически все природные явления можно описать с помощью линейных уравнений. «Как мир был подобен заводным часам в XVIII столетии, так он стал линейным в XIX и большей части XX столетия»7.

Решительная перемена за последние три десятилетия выразилась в осознании того, что Природа, по выражению Стюарта, «безжалостно нелинейна». Нелинейные процессы преобладают в неодушевленном мире в гораздо более значительной степени, чем мы предполагали. Они также являются существенным аспектом сетевых паттернов живых систем. Теория динамических систем — первая математическая система, позволяющая ученым работать со всем диапазоном сложности этих нелинейных феноменов.

Исследования нелинейных систем за последние десятилетия оказали значительное влияние на науку в целом, поскольку заставили нас заново оценить некоторые фундаментальные представления о взаимоотношениях между математической моделью и теми феноменами, которые она описывает. Одно из таких представлений касается нашего понимания простоты и сложности.

Пребывая в мире линейных уравнений, мы думали, что системы, описываемые простыми уравнениями, отличаются простым поведением, в то время как описываемые сложными уравнениями ведут себя гораздо сложнее. В нелинейном мире — который, как мы начинаем обнаруживать, составляет львиную долю реального мира — простые детерминистские уравнения могут таить в себе неожиданное богатство и разнообразие поведения. С другой стороны, сложное и кажущееся хаотичным поведение может породить упорядоченные структуры, тонкие и изящные паттерны. В теории хаоса сам термин хаос приобрел новое, техническое значение. Поведение хаотических систем не просто беспорядочно: оно проявляет более глубокий уровень паттернового порядка. Как мы увидим ниже, новый математический аппарат позволяет рассмотреть эти глубинные паттерны в явных и отчетливых формах.

Еще одно важное свойство нелинейных уравнений, которое всегда смущало ученых, заключается в том, что точное предсказание часто бывает неосуществимо, даже если уравнения строго детерминированы. Эта поразительная особенность нелинейности обусловила важный сдвиг акцента от количественного анализа к качественному.

Обратная связь и итерации

Третье важное свойство нелинейных систем вытекает из частого возникновения в них процессов с усиливающей обратной связью. В линейных системах малые изменения производят малые эффекты, а значительные эффекты являются следствием либо больших изменений, либо суммы множества мелких изменений. В нелинейных системах, напротив, мелкие изменения могут вызвать драматический эффект, если они многократно усиливаются через обратную связь. Такие нелинейные процессы с обратной связью лежат в основе неустойчивости и внезапного появления новых форм порядка, столь характерных для самоорганизации.

Математически петля обратной связи соответствует особому типу нелинейного процесса, известному как итерация (латинское «повторение»); в этом процессе функция многократно применяется к себе самой. Например, если функция состоит в умножении переменной на 3, т. е. f(x) = Зх, то итерация заключается в многократном умножении. В математике это записывается так:

х → Зх
Зх → 9х
9х → 27х
и т. д.

Каждый из этих шагов называется отображением. Если мы представим себе переменную х в виде числовой оси, то операция х — > Зх отображает каждое число на другое число на этой же оси. В более общем случае отображение, состоящее в умножении х на постоянное число /с, записывается в виде:

х → kх .

Часто встречаемой в нелинейных системах итерацией, очень простой и в то же время производящей огромную сложность, является отображение:

х kх(1 - х),

где переменная х ограничена значениями от 0 до 1. Это отображение, известное математикам как логистическое, имеет много важных приложений. Его, например, используют экологи для описания роста населения при противоположных тенденциях, и поэтому оно также известно как уравнение роста8.

Исследование итераций разнообразных логистических отображений представляет собой увлекательное упражнение, которое можно легко осуществить с помощью карманного калькулятора9. Чтобы понять существенную особенность этих итераций, снова выберем значение k=3:

х Зх(1 - х).

Переменную х можно представить в виде участка оси от 0 до 1, тогда очень просто вычислить отображения для нескольких точек, например

0(1 - 0) =0
0.2 0.6 (1 - 0.2) = 0.48
0.4 1.2 (1 - 0.4) = 0.72
0.6 1.8 (1-0.6) = 0.72
0.8 2.4 (1 - 0.8) = 0.48
3(1-1) =0.

Отметив эти числа на двух участках оси, можно увидеть, что величины от 0 до 0,5 отображаются числами от 0 до 0,75. Таким образом, 0,2 превращается в 0,48, а 0,4 становится 0,72. Числа от 0,5 до 1 отображаются на том же участке, но в обратном порядке. Так, 0,6 превращается в 0,72, а 0,8 становится 0,48. Общий эффект показан на рис. 6-6. Отображение растягивает отрезок от 0 до 1,5, а затем снова сворачивает его так, что значения пробегают от 0 до 0,75 и обратно.

Итерация этого отображения выльется в повторяющееся растягивание и сворачивание операций подобно тому, как пекарь вновь и вновь месит тесто, сворачивая и растягивая его. Эту итерацию очень удачно назвали преобразованием пекаря. По мере того как происходит растягивание и сжимание, соседние точки на отрезке будут все дальше и дальше расходиться, и предсказать, где окажется определенная точка после множества итераций, становится невозможно.

Даже самые мощные компьютеры округляют свои вычисления, ограничивая количество цифр после точки; и после большого количества итераций даже мелкие погрешности округления складываются в значительную неопределенность, исключая любые предсказания. 11реобра-зование пекаря есть прототип нелинейных сверхсложных непредсказуемых процессов, обозначаемых специальным термином «хаос».