Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Загадки для знатоков. История открытия и исследования пульсаров - Амнуэль Павел (Песах) Рафаэлович - Страница 13


13
Изменить размер шрифта:

Но если сила тяжести существует в звезде всегда, то этого нельзя сказать о газовом давлении. Ведь для того чтобы газ был нагрет, нужна какая-то причина, какая-то, грубо говоря, «печка». Что же поддерживает температуру звезды? Это был главный вопрос астрофизики: почему звезды светят? Гипотез по этому поводу выдвигалось много. Лишь в тридцатые годы проблема стала проясняться — были открыты ядерные превращения. Между прочим, тогда выяснилось, что о возможности черпать энергию нагрева звезды из ядерных реакций (например, из слияния водорода в гелий) писал еще в 1919 году Р. Аткинсон. Но, естественно, эта работа никакого впечатления не произвела.

Однако какими бы ни были источники нагрева звезды, они должны себя в конце концов исчерпать. Что случится со звездой после этого? Звезда остынет, как печка без дров, и газовое давление уменьшится. Но тогда сила тяжести начнет сжимать звезду. До каких пор?

Одно из двух. Либо отыщется другой вид давления, отличный от обычного газового, и сжатие будет остановлено, либо… Либо такого давления не найдется, и звезда будет сжиматься бесконечно! До появления квантовой механики астрономы не знали иного давления, кроме давления нагретого газа. Квантовая механика позволила сделать шаг вперед. Оказалось, что даже абсолютно холодный газ (нуль градусов по шкале Кельвина) обладает вполне определенным остаточным давлением, причем настолько большим, что оно способно остановить сжатие звезды. Дело в том, что в квантовой механике существуют два сорта элементарных частиц, различных по своим характеристикам. Поскольку в микромире все свойства меняются не непрерывно, а порциями, квантами, то и вращение элементарных частиц тоже описывается не угловой скоростью, а дискретным квантовым числом — спином. Спин частицы может быть целым (0, 1, 2 и т. д.) или полуцелым (1/2, 3/2 и т. д.). Поведение частицы зависит от того, целый у нее спин или полуцелый. Еще в начале двадцатых годов, когда квантовая механика только начиналась как научная дисциплина, индийский физик Бозе (а затем Эйнштейн) описал поведение частиц, обладающих целым спином. Теперь такие частицы называют бозонами. А поведение частиц с полуцелым спином описывается квантовой статистикой, созданной Ферми и Дираком и названной их именами. Сами же частицы называют фермионами. Бозонами являются фотоны и нейтрино (тогда еще не открытое). А протон, электрон, нейтрон (тогда еще тоже не обнаруженный) являются фермионами.

В квантовой механике существует принцип Паули, который гласит: в одном и том же квантовом состоянии не могут находиться сразу две (и больше) частицы с полуцелым спином. Фермионы не могут обладать одинаковыми энергиями или импульсами!

А теперь заглянем внутрь звезды. Источники нагрева исчерпаны, звезда остывает. Представим, что она совсем остыла — температура ее стала равной абсолютному нулю. Естественно, что вся тепловая энергия частиц (энергия их хаотического движения) тоже исчезла. Нет хаотического движения, нет и давления. Ничто не противостоит тяжести, стремящейся сжать звезду. Ничто ли? Звезда ведь состоит из атомных ядер, протонов, электронов, нейтронов (не забудем, что нейтроны тогда еще не были открыты), в общем — из фермионов. И значит, в остывшей звезде действует квантовая статистика Ферми — Дирака, действует принцип Паули. Две частицы не могут обладать одинаковыми импульсами! Когда мы говорим, что в абсолютно холодной звезде прекращается всякое движение, это справедливо только для одной-единственной частицы. Одна частица действительно обладает нулевым импульсом. Но именно поэтому любая другая частица должна иметь импульс, отличный от нуля (действует принцип Паули!). Третья частица должна иметь еще больший импульс и так далее.

В звезде колоссальное число частиц (в Солнце их около 1057). И как бы мало ни отличались импульсы частиц друг от друга, все же импульс самой энергичной из них окажется огромным. Но если есть импульс, то есть и давление. Если импульс частиц может оказаться большим, то велико может быть и давление. Импульс самой быстрой частицы в такой системе называется граничным Ферми-импульсом, а описанный нами газ называется вырожденным Ферми-газом. Если такой газ нагревать, то вырождение исчезнет — частицы приобретают хаотическое тепловое движение, освобождают уровни, на которых находились раньше, все больше и больше увеличивая свои импульсы…

Итак, остывая, звезда сжимается. Частицы все сильнее прижимаются друг к другу. Частиц очень много, граничный импульс Ферми очень велик. Наступает вырождение — давление вырожденного газа становится больше, чем обычное тепловое давление. А если сжатие продолжается, то давление вырожденного газа способно даже уравновесить силу тяжести!

Теория вырожденных звезд была строго развита в 1931 году индийским астрофизиком С. Чандрасекаром. В статье «Сильно сжатая конфигурация звездной массы» он описал звезду из вырожденного газа протонов и электронов. Оказалось, что открытые почти сто лет назад белые карлики прекрасно описываются законами квантовой механики, законами статистики Ферми — Дирака. В белых карликах давление вырожденного газа как раз таково, что уравновешивает силу тяжести. Плотность вещества в белых карликах (1 т/см3) достаточна для создания нужного давления. Наконец, размеры звезд (10 000 км) достаточны для создания нужной плотности. Все прекрасно сходилось! Конечно же, температура белых карликов, наблюдаемых в телескопы, не равна абсолютному нулю. Спутник Сириуса нагрет до 10 тысяч градусов. Но что значит тепловая энергия, соответствующая этой температуре, по сравнению с энергией вырождения? Капля в море… Поэтому белые карлики хорошо описываются уравнениями, выведенными для абсолютно холодного вещества.

И еще один очень важный вывод сделал Чандрасекар. Дело в том, что давление вырожденного газа из протонов и электронов тоже не может расти безгранично. Наступит момент, когда и оно не сможет противостоять тяжести. Для этого нужно, чтобы тяжесть превысила некоторый предел. А для этого, в свою очередь, нужно, чтобы масса звезды была больше некоторого критического значения — ведь именно масса звезды и создает тяжесть! Вывод: должна существовать предельная масса белого карлика.

Чандрасекар рассчитал величину этой предельной массы. Она оказалась равной 1,4 массы Солнца в том случае, если белый карлик состоит из гелия.

Работа Чандрасекара произвела огромное впечатление — она объясняла существование наблюдаемого класса звезд, она определяла этим звездам место в общем ряду. Белые карлики, следовало из работы Чандрасекара, — это звезды после исчерпания источников энергии (правда, никто в то время не знал, что это за источники). Белые карлики — конечная стадия жизни звезд. Всех звезд — к такому выводу пришли астрофизики.

Казалось бы, здесь возникает противоречие. Белый карлик не может быть более массивен, чем 1,4 массы Солнца. Но ведь и в двадцатые годы астрономы знали, что есть гораздо более массивные звезды. Десять, двадцать масс Солнца. Гиганты и сверхгиганты. Что делать с ними? Они-то, видимо, не смогут стать белыми карликами?

Астрономы считали, что смогут! Ничего не зная об источниках звездной энергии, они все же выдвигали гипотезы о том, как звезды эволюционируют. Когда вышла из печати статья Чандрасекара, популярной была гипотеза (ошибочная!) о том, что все звезды рождаются голубыми гигантами большой массы. Постепенно они остывают, светимость их падает, они становятся красными карликами, а потом… А потом — белыми. Но масса красного карлика (и тем более — белого) значительно меньше массы голубого гиганта. Отсюда был сделан вывод: эволюционируя, звезды все время теряют свою массу в космическое пространство. В конце жизненного пути любая звезда потеряет ровно столько вещества, сколько нужно, чтобы ничто уже не помешало ей превратиться в белый карлик.

Так, казалось бы, наблюдательный факт (существование звезд разных масс) был состыкован с интерпретацией (звезды теряют вещество) и с теоретическими исследованиями (предельная масса белого карлика). Нуждались ли при этом астрофизики в звездах, которых никто никогда не видел? Если у вас есть удобно сшитое пальто, станете ли вы пришивать к нему третий рукав? Нет, конечно. Поэтому реакция астрофизиков на предсказание Цвикки вполне объяснима. Правда, на небосклоне астрофизики, как в свое время на физическом небосклоне, виднелось серое облачко — так и не объясненные сверхновые звезды. Но разве физики конца прошлого века обращали на свои облачка особое внимание? Нет. Астрофизики были не более прозорливы…