Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Истина в пределе. Анализ бесконечно малых - Дуран Антонио - Страница 32
В «Резюме лекций по исчислению бесконечно малых» также приводится определение интеграла непрерывной функции
как предела сумм Коши:
где a < х1 < х2 < … < xn-1 < b — разбиение интервала [а, b], а искомый интеграл рассчитывается как предел при разбиении интервала на отрезки, длины которых стремятся к 0.
Как показано на иллюстрации, каждое слагаемое этой суммы соответствует площади прямоугольника, и мы можем выразить площадь подграфика функции с любой точностью.
Также в книге определяются и рассматриваются несобственные интегралы, главные значения несобственных интегралов и сингулярные интегралы, основная теорема анализа, формула Тейлора и так далее. Коши продемонстрировал функцию
ряд Тейлора для которой в точке 0 сходится, но отличается от функции в окрестности нуля. Это доказывает невозможность выстраивания анализа бесконечно малых поверх прочной основы, предложенной Лагранжем.
Мы не будем говорить о других работах Коши и резюме его лекций, а расскажем о значимости его трудов в формировании основы анализа бесконечно малых.
Несомненно, его попытки логически обосновать анализ бесконечно малых были значимым этапом, но тем не менее не окончательным. Нильс Абель, великий норвежский математик, одним из первых обратил внимание на важность работ Коши, отметив их строгость и вместе с тем неполноту. Одновременно с этим он указал, в чем именно заключаются недостатки работ Коши. Это был очередной шаг вперед на пути, который полностью был пройден в середине XIX века с появлением работ Вейерштрасса. Окончательное и четкое определение вещественных чисел было дано еще два десятилетия спустя. Сам Абель в статье, опубликованной в 1826 году, доказал, что одна из теорем «Курса анализа» Коши «допускала исключения» (оцените дипломатичность формулировки!). Эта теорема Коши была не единственной, «допускающей исключения».
Нильс Хенрик Абель (1802-1829) был одним из наиболее ожесточенных противников отсутствия математической строгости: «В высшей математике, — писал он в 1826 году, — лишь некоторые предположения доказаны с неоспоримой строгостью. Неизменно встречается печальная привычка выводить общее из частного, и, несомненно, весьма заметно, что результатами подобных рассуждений чаще всего являются парадоксы». Поэтому неудивительно, что Абель изучал тексты Коши и ценил его стремление внести строгость и порядок в математику. «Коши упрям,- писал Абель, будучи в Париже в 1826 году,- и с ним нельзя договориться, но именно он сегодня лучше всех знает, как следует обращаться с математикой. Его работы удивительны, но достаточно запутаны. Сперва я ничего в них не понял, но теперь начинаю понимать их более ясно».
В статье о биноме Ньютона, опубликованной в 1826 году, он пишет: «Курс анализа» Коши следует прочитать всякому аналитику, который хочет действовать в своих математических исследованиях со всей строгостью».
Однако усилия Коши по приданию математическому анализу большей строгости были лишь очередным промежуточным этапом развития этой дисциплины. Доказательством этому служит то, что исследователи работ ученого не пришли к единому выводу об истинности или ошибочности его теорем. Это кажущееся противоречие вызвано тем, что определения, представленные Коши в «Курсе анализа», были неточными и нечеткими и порой допускали несколько толкований. Неоднозначность этих определений лучше всего объясняет Айвор Граттангиннес: «Достаточно сказать, что использованные им технические термины заслуживают внимания, и в теореме Коши, как и во всем его анализе, они применяются крайне свободно».
Эйлер, Коши и эстетическая ценность математики
Следует рассказать и об эстетическом начале, поскольку, вопреки мнению многих, эстетика не только не чужда математике, но и составляет ее значимую часть.
Название этой главы — «Укрощенные бесконечно малые» — указывает, что Коши совершил решающий шаг, преодолев с помощью теории пределов логические проблемы, возникавшие в анализе бесконечно малых с XVII века. Как мы уже говорили выше, бесконечно большим и бесконечно малым величинам изначально не было дано логически строгого и четкого определения. В этом смысле, например, «Введение в анализ бесконечно малых» Эйлера является недостаточно логичным. По этой причине математики в итоге стали отдавать предпочтение пределам. Однако теперь нам известно, что рассуждения Эйлера с использованием бесконечно малых столь же строги, как и современные рассуждения, в которых используются пределы. Строго говоря, логический фундамент анализа XVIII века сформировал Абрахам Робинсон в 1966 году. На основе теории моделей он показал, что вещественные числа можно расширить множеством бесконечно малых, с которыми можно производить стандартные арифметические операции. Созданный им раздел математики получил название «нестандартный анализ».
Теперь, как и было обещано, мы расскажем об эстетической составляющей математики, так как рассуждения Эйлера во «Введении в анализ бесконечно малых» намного красивее, чем рассуждения, записанные с использованием пределов.
Математику часто называют сухой наукой, которая изучает идеальные абстрактные объекты, числа и треугольники, наукой, в которой нет места эмоциям. Это совершенно не так. Профессиональные математики выбрали свою профессию по разным причинам, но всех их объединяет одно: математика представляет для них источник сильных эмоций. Эрнест Уильям Хобсон (1856—1933) сказал о «Введении в анализ бесконечно малых»: «Будет непросто найти другой труд в истории математики, который оставляет у читателя такое впечатление о гениальности его автора, как этот». Любой, кто читал его, полностью согласится с Хобсоном. Это впечатление создается потому, что труд Эйлера вызывает бурные эмоции, оставляет след. Гениальность Эйлера нашла воплощение в красоте его работы, в ее эстетической ценности, выходящей далеко за рамки простой математики. Иными словами, эта книга не только обладает свойствами, о которых говорит Харолд Харди (1877—1947) в своей знаменитой «Апологии математика», рассуждая о красоте математических идей. В ней также присутствуют общие эстетические категории, о которых писали Иммануил Кант, Теодор Адорно и Джордж Сантаяна.
Один из самых удивительных результатов, содержащихся в труде Эйлера, как с математической, так и с эстетической точки зрения — это разложение функции синуса в бесконечный ряд:
а также то, как Эйлер использует этот ряд вместе с разложением в степенной ряд для нахождения суммы следующих бесконечных степенных рядов:
Живительно, что эти потрясающе красивые результаты, которые не смогли найти Лейбниц, братья Бернулли и, возможно, сам Ньютон, Эйлер смог вывести с помощью бесконечно малых всего на нескольких строках. Его рассуждения просты и гениальны, и можно четко проследить, какие идеи позволили ему совершить эти открытия. Если попытаться переписать эти рассуждения, используя теорию пределов, они теряют значительную долю простоты и красоты. Чтобы убедиться в этом, достаточно сравнить выкладки Эйлера во «Введении в анализ бесконечно малых» и последние страницы «Курса анализа» Коши (примечания VIII и IX). Коши пытается подтвердить правильность результатов Эйлера с помощью пределов, в результате чего элегантные и краткие рассуждения Эйлера, занимающие несколько строк, превращаются в несколько десятков страниц вычислений. Можно без преувеличения сказать, что Коши превратил деликатный эротизм Эйлера в порнографию.
- Предыдущая
- 32/34
- Следующая