Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Жар холодных числ и пафос бесстрастной логики - Бирюков Борис Владимирович - Страница 25
Сейчас я заканчиваю книгу о принципах математики[27], и в ней мне хотелось бы рассмотреть Вашу работу весьма подробно. Я уже имею в распоряжении Ваши книги или скоро куплю их, но я был бы весьма благодарен, если бы Вы прислали мне оттиски Ваших статей, опубликованных в периодических изданиях. Впрочем, если это невозможно, я могу читать их, беря в библиотеке.
Умение хорошо применять логику в фундаментальных вопросах, где бессильны формулы, встречается очень редко; в Ваших работах я нахожу лучшее из таких применений, имеющихся на сегодня, поэтому я разрешу себе выразить Вам свое глубокое уважение. Очень жаль, что Вы не опубликовали второй том «Основных законов»; надеюсь, что это все же будет сделано.
С уважением Бертран Рассел
В словах Рассела о втором томе книги Фреге не было, конечно, никакой иронии. Но была ирония судьбы, ибо этот том вот-вот должен был выйти в свет, когда Фреге получил письмо Рассела. Проявив редкую научную добросовестность и мужество, Фреге включил в книгу вышедшую в 1903 году, следующие слова:
«Вряд ли существует что-нибудь более нежелательное для ученого, чем после окончания работы увидеть, как рушатся ее основы. Именно в такое положение поставило меня письмо г-на Бертрана Рассела, полученное мной, когда книга была уже в печати»[28].
Как пишет американский логик X. Карри в своей книге «Основания математической логики», последствия письма Рассела были для Фреге трагическими. «Хотя ему тогда было всего пятьдесят пять лет и он прожил после этого более двадцати лет, он больше не опубликовал ни одной значительной работы по логике»[29]. Более того, после обнаружения противоречия Фреге два семестра не читал лекций в Иенском университете, профессором которого состоял, а потом, возобновив их, читал лекции по «записи в понятиях» и основаниям геометрии, но не по основаниям арифметики[30].
До конца дней он пытался найти выход из возникшей трудности обоснования арифметики, возложив все надежды на геометрию, — идя от нее, он пытался наметить пути обоснования и арифметики, и всей математики[31].
Но как бы нас ни трогала судьба Фреге, в первую очередь нам интересно, во что вылился логицизм как течение в основаниях математики и что стало с теоретико-множественной концепцией ее обоснования. Теории обладают значительно большей жизнеспособностью и стойкостью, чем люди. Что касается логицизма, то его взялся отремонтировать сам «разрушитель» — Бертран Рассел. Вместе с Альфредом Уайтхедом он издал в 1910—1913 годах труд «Principia Mathematica», в котором излагался новый вариант логико-множественного подхода к арифметике, где с помощью некоторых ограничений, наложенных на процесс формирования «вторичных» множеств приведенный в письме Рассела парадокс был исключен[32]. Однако система Рассела — Уайтхеда оказалась слишком громоздкой и базирующейся на допущениях, которые далеко не всем математикам и логикам представлялись убедительными[33].
Возникшие трудности были сигналом тревоги для тех специалистов, которые «отвечали» за основания математики. Источник противоречия, возникшего у Фреге, был, очевидно, в самом построении рассуждений. Поэтому надо было по-новому взглянуть на весь процесс математического доказательства и прежде всего проанализировать лежащие в его основе допущения. Так началась великая переоценка математических ценностей, которая далеко еще не закончилась и к настоящему времени, но уже дала ценнейшие плоды не только в математике и логике, но и в осмысливании проблем человеческого познания и его возможностей в создании машинных «усилителей интеллекта».
5. ПРОВОЗВЕСТНИКИ ПЕРЕМЕН
Мы уже сказали, что первой математической реакцией на трудности, обнаруженные при последовательном проведении теоретико-множественной установки в математике, они выразились не только в парадоксе Рассела, но и в ряде других формально-логических противоречий в канторовской теории, некоторые из которых были сформулированы даже раньше, чем противоречие в системе Фреге, были «ремонтные меры», предпринятые Расселом. Но этот мыслитель продолжал стоять на теоретико-множественной позиции.
Поэтому естественно, что нашлись люди, которые сочли эти меры полумерами и призвали математический мир пойти в отказе от прежнего образа мыслей гораздо дальше. Реформы ничего не дадут, провозгласили они, нужна революция! Одним из наиболее «левых» был голландский математик, уже получивший к тому времени известность своими работами в области топологии, Луитцен Ян Эгбертус Брауэр (1881—1966)[1]
При изложении платформы Брауэра возникают большие трудности, связанные с несколькими причинами. Брауэр все свои главные статьи по философии математики писал по-голландски, употребляя, как заявляют переводчики, специфические и тяжеловесные выражения, которым трудно найти эквиваленты в других языках. Он, по-видимому, не считал, что его философско-математические убеждения можно достаточно ясно объяснить другим людям; скорее, он носил в себе определенные ощущения того, какой, по его мнению, должна быть математика. Позиция Брауэра менялась и уточнялась с течением времени, и нет никакой гарантии, что многочисленные ее толкования достаточно правильны.
Попытаемся все же выделить некоторые главные пункты философско-математических установок Брауэра и его школы.
1. Единственным источником, порождающим математику, Брауэр считал человеческий интеллект, и в этом был солидарен с Декартом[2].
2. Особенность разума, дающая ему возможность создать математику, это некое ощущение времени, вернее, способность различать два последовательных момента времени как два разных момента. Эта способность порождает, в свою очередь, способность вести счет натуральным числам. Таким образом, у Брауэра натуральные числа выступают как нечто первичное, непосредственно данное глубинной человеческой интуиции. Именно из-за этого математика школы Брауэра названа интуиционистской математикой, а логика, принятая в этой математике» — интуиционистской логикой.
3. Из второго пункта вытекает, что «классическая» логика не является чем-то первоначальным, как ошибочно полагают логицисты. В глубинной интуиции даны лишь конечные образования — натуральные числа. На каком же основании классическую логику, которая могла возникнуть лишь как отражение опыта оперирования с конечными объектами, распространяют на бесконечные множества? К бесконечным множествам не всегда применим закон исключенного третьего (принцип: из двух высказываний, одно из которых есть отрицание другого, по крайней мере одно истинно).
Этот важнейший пункт брауэровской критики классической логики и теоретико-множественной математики требует пояснения. Воспользуемся известным примером. Рассмотрим высказывание(*) «В десятичном представлении числа я либо имеется девять нулей подряд, либо не имеется». Это высказывание подпадает под схему закона исключенного третьего (а V ~а) и с «классических» позиций должно быть признано верным.
Но с точки зрения Брауэра это высказывание может иметь смысл лишь в том случае, если у нас есть способ проверить, какая из двух альтернатив — а или ~а — имеет место[3]. В данном же случае этого сделать нельзя: вычисляя значение числа π со все большей точностью, мы можем в конце концов добраться до «пакета» из девяти нулей — и тогда подтвердится первая альтернатива (что и будет означать истинность высказывания (*));но может случиться, что процесс вычисления будет продолжаться неограниченно долго — и это вовсе не будет означать справедливости второй альтернативы. Таким образом, вопрос о верности рассматриваемого высказывания (*) остается открытым. Конечно, если бы у нас было независимое от этого процесса вычисления доказательство второй альтернативы, то истинность данного суждения тоже была бы установлена. Но наука в настоящее время им не располагает. Таким образом, закон исключенного третьего как «общезначащую» логическуй схему следует отвергнуть.
- Предыдущая
- 25/52
- Следующая