Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Жар холодных числ и пафос бесстрастной логики - Бирюков Борис Владимирович - Страница 11
Чтобы пояснить, какого рода логические рассуждения можно было «передать» машине Джевонса, расскажем о его логическом исчислении. Это исчисление было модификацией алгебры логики Дж. Буля, о вкладе которого в интересующую нас область речь пойдет в следующей главе.
Исчисление Джевонса представляло собой некоторую логику равенств, так как каждое высказывание записывалось в нем в виде равенства, то есть выражения вида А = В, где А и В могли быть сложными логическими выражениями. Преобразование равенств производилось по правилу замены равным, известному из школьной алгебры, так как на нем основаны тождественные преобразования алгебраических выражений.
Правило это (его Джевонс называл «принципом замещения») гласит: если верно, что А = В, и об А нечто утверждается (то есть A входит в состав какого-то сложного утверждения, признаваемого верным), то тоже самое должно утверждаться и о В. Как, разъясняет Джевонс, «то, что верно об одной вещи, будет верно и относительно другой, равнозначащей с первой»[14].
Логика Джевонса была логикой классов; суждения в ней записывались как равенства и истолковывались как высказывания о классах (множествах) предметов. Смысл равенств был следующим:
(1) А = В — простое тождество: множества A и B совпадают. Например, «Равносторонние треугольники = равноугольные треугольники», то есть «Все равносторонние треугольники равноугольны».
(2) A = АВ — частичное тождество: класс A совпадает с пересечением классов А и В[15].
Например, «Млекопитающие = млекопитающие позвоночные», чему в обычной речи соответствует «Все млекопитающие суть позвоночные».
(3) АВ = АС — ограниченное тождество: тождество B и C ограничено сферой вещей, которые суть A. Например, «Материальное вещество = материальное тяготеющее вещество».
(4) A = АВ' — выражает отрицательное суждение «Ни одно A не есть В». Например, «Элемент = то, что не может быть разложено». Здесь В' — класс, дополняющий B до «класса всех вещей» - универсального класса V.
(5) A = АВ ∪ АС — формула так называемого разделительного (дизъюнктивного) суждения «A суть B или C» («Красный металл есть медь или золото»).
(6) РА = РАВ — формула частного суждения «Некоторые A являются В» («Некоторые металлы имеют меньшую плотность, чем вода»). Здесь β — знак «неопределенного количества»; РА означает какую-то (неопределенную, но фиксированную) часть класса A.
В процессе дедукции в теории Джевонса используются законы тождества, противоречия и исключенного третьего. Закон тождества, в наиболее общей формулировке утверждающий требование неизменности понятий и суждений в процессе рассуждения, передается формулой A = A, где A —любое множество. Закон противоречия, запрещающий признание истинным высказывания и его отрицания, записывается, по Джевонсу, как AA' = Λ (результат пересечения произвольного класса A со своим дополнением есть пустой класс; здесь Λ — знак пустого множества, то есть множества, не содержащего ни одного элемента). Закон исключенного третьего, утверждающий, что если дано высказывание и его отрицание, то по крайней мере оно из них верно (верность того и другого запрещается законом противоречия), Джевонс записывает в виде разделительного суждения A = АВ ∪ АВ'. Эту запись можно иллюстрировать суждением «Вода бывает соленая или пресная (то есть несоленая)» («Вода = соленая вода или пресная вода»). Очевидно, это суждение истинно.
Приведем примеры логических выводов в исчислении Джевонса:
1. Дана посылка A = АВ (например, «Все металлы — элементы», то есть «Все металлы = металлы, являющиеся элементами»); покажем, что из нее выводится суждение AС = ABC («Все жидкие металлы — жидкие элементы»). Возьмем суждение АС = AC, верное по закону тождества.
Поскольку в посылке об A утверждается, что этот класс равен AB, мы можем, пользуясь «принципом замещения», заменить в данном суждении второе вхождение A на AB. и результате получится требуемое заключение.
2. Из B = ВС' и A = АВ следует A = ABC', а отсюда (по действующему в системе Джевонса правилу, позволяющему зачеркнуть в последней формуле букву В) получается A = AС'. Это — модус аристотелевского силлогизма Celarent: «Ни одно B не есть С, все A суть B; значит, ни одно A не есть С».
3. Из посылки «Все A суть B» следует заключение «Ни одно не-B не есть A». В самом деле, из A=AB, присоединяя суждение B' = B'A ∪ B'A'; (по закону исключенного третьего), получает B' = B'AB ∪ B'A'; использование комутативности операции пересечения дает B' = ABB' ∪ A'B'. Поскольку BB' = Λ ( по закону противоречия) и AΛ = Λ (пересечение любого множества с пустым множеством пусто), оказывается, что ABB' = Λ, откуда (в силу того, что Λ ∪ A'B' = A'B') вытекает формула B' = A'B', выражающая рассматриваемое заключение.
Очерченное логическое исчисление и было положено Джевонсом в основу работы его машины. Последняя представляла собой механическое устройство с клавиатурой {и поэтому получила название «логического пианино»). Ее работа основывалась на той идее, что всякое высказывание-посылку можно рассматривать как исключение альтернативных-вариантов; получение заключения из системы посылок состоит в отборе незабракованных альтернатив и в их компактном представлении, удобном для понимания.
Пусть даны три класса A, В и С. Мы можем ввести в рассмотрение класс A, а можем рассматривать дополнение к нему, то есть класс А'; в первом случае мы можем ввести в рассмотрение класс В и взять его пересечение с A, а можем взягь класс В' и т. д. Делая тоже самое для С, мы получим альтернатива (они носят название конституэнт): AВС, AВС', AВ'С, AВ'С',A'ВС, A'ВС', A'В'С, A'В'С'. Если соединить, все конституэнты знаком ∪ то мы получим формулу, выражающую универсальный класс: AВС ∪ ABC' ∪ AB'C ∪ AB'C' ∪ A'BC ∪ A'BC' ∪ A'B'C ∪ A'B'C' = V[16]. теперь пусть нам даны посылки из приведенного выше примера 2 (модус Celarent): В = ВС' и A = AВ. Их можно записать в другом виде: ВС = Λ (поскольку, если ни одно В не есть С, то пересечение классов В и С пусто) и AB' = Λ (так как если все A суть В, то пересечение A с дополнением к В не может быть не пустым).
Это означает, что альтернативы AВС и A'ВС обращаются в пустой класс в силу первой посылки (поскольку пересечение любого класса с пустым классом дает пустой класс), а альтернативы АВ'С и AВ'С'— в силу второй посылки. Таким образом, мы получаем: (*) AВС' ∪ A'ВС' ∪ A'В'С ∪ A'В'С' = V. Теперь очевидно, что AС должно быть пустым классом (что и будет означать A = AС', то есть «Ни одно A не есть С») — ведь конституэнты AВС и А В'С, объединение которых совпадает с AС, отсутствуют в выражении (*) (поскольку, как мы видели, они «бракуются» нашими посылками).
Набор на клавиатуре машины Джевонса посылок этого умозаключения (клавиатура содержит клавиши для четырех переменных и их отрицаний) приводит к тому, что на ее выходном табло получается заключение. Но на этой машине можно решать и задачи другого рода: представлять логическое выражение в виде набора конституэнт; проверять равносильность выражений; упрощать логические формулы; устанавливать, какие утверждения о данном классе можно выразить в терминах некоторых других классов; определять гипотезы, из которых следует данное выражение; проверять правильность силлогизмов и т. д.
Машина Джевонса не освобождала, однако, логический вывод от участия «человеческой» логики: результат, который выдавала машина, нуждался в переформулировке. Кроме того, машина была логически маломощна, и хотя используя одновременно две машины, можно было решать более сложные задачи, тем не менее возможности придуманных Джевонсом процедур были весьма ограниченными. Главное ограничение состояло в том, что небогатой была сама логическая теория, лежавшая в их основе. Дальнейшее развитие автоматизации логических процедур, как мы увидим, оказалось существенно связанным с развитием самой логики.
3. ОБРЕТЕНИЕ ПИСЬМЕННОСТИ
- Предыдущая
- 11/52
- Следующая