Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологическо - Лапо Андрей Витальевич - Страница 30


30
Изменить размер шрифта:

X. А. Ловенштам составил таблицу, иллюстрирующую распределение минералов в составе разнородного живого вещества (рис. 5). Оказалось, что среди крупных таксонов органического мира наибольшее количество минералов образуют многоклеточные животные: моллюски (20 минералов) и позвоночные (17). Большинство минеральных образований, входящих в состав живого вещества, плохо растворимо в морской воде и благодаря этому после отмирания организмов накапливается в осадках (из этого правила имеются, конечно, и исключения).

Рис. 5. Минералы, образуемые живыми организмами (по Ловенштаму, 1984). Наверху — названия царств органического мира (по Маргелис, 1983), внизу — названия типов

По степени концентрации химических элементов Вернадский разбил живые организмы на 4 группы. В первую группу — «организмы какого-либо элемента» — были включены организмы, концентрирующие данный элемент в количестве 10% и выше. Существуют, например, кремниевые организмы (диатомовые водоросли, радиолярии, кремниевые губки), кальциевые (бактерии, водоросли, простейшие, моллюски, брахиоподы, иглокожие, мшанки и кораллы), железные (железобактерии) и т. д. Во вторую группу — «богатые каким-либо элементом» — относились организмы, содержащие данный элемент в количестве около 1% и выше (до 10%). При этом содержание элементов в первых двух группах должно быть выше, чем кларк данного элемента. Третью группу составляют «обычные организмы», четвертую — «бедные данным элементом».

Развивая эти представления с несколько иных позиций, югославский геохимик В. Омальев недавно ввел понятие биогеохимического фона, которое он предложил обозначать термином «вернадский» (по аналогии с кларком). Биогеохимический фон, или вернадский, — это среднее содержание какого-либо элемента в живом веществе — как в разнородном живом веществе биосферы в целом, так и в живом веществе отдельных типов, классов, родов или видов живых организмов.

Один из основоположников геохимии, известный норвежский ученый Виктор Мориц Гольдшмидт (1888—1947) в разработанной им геохимической классификации элементов выделил особую группу биофильных элементов, включив туда углерод, водород, кислород, азот, фосфор, серу, хлор и йод. Следуя по этому пути, академик Б. Б. Полынов в 1948 г. предложил выделять группу элементов-органогенов, подразделяя ее на: а) абсолютные органогены, без которых совершенно невозможно существование организмов (водород, углерод, кислород, азот, фосфор, сера, калий, магний) и б) специальные органогены, необходимые для многих организмов, но необязательные для всех. Через 8 лет В. А. Ковда добавил в число абсолютных органогенов еще 6 элементов: йод, бор, кальций, железо, медь и кобальт. В дальнейшем число органогенов неудержимо росло, и в настоящее время установлено, что, если учитывать и те элементы, которые содержатся в небольших количествах, в состав живого вещества входят все элементы таблицы Менделеева. При этом, как установили Г. Н. Саенко, М. Д. Корякова, В. Ф. Макиенко и И. Г. Добромыслова, организмы концентрируют из среды не один какой-либо элемент, а целую группу их, обычно состоящую из 4—7 поливалентных элементов. Это явление получило название специфического группового концентрирования.

Интенсивность вовлечения химического элемента в биотический круговорот академик Б. Б. Полынов предложил измерять частным от деления числа, показывающего количество элемента в золе организма, на число, характеризующее его содержание в исходной породе. Позднее ученик Б. Б. Полынова профессор А. И. Перельман стал называть эту величину «коэффициентом биологического поглощения». В целом для биосферы говорят о биофильности элементов: отношении их среднего содержания в живом веществе к кларку данного элемента в литосфере. Наибольшей биофильностью характеризуется углерод, менее биофильны азот и водород.

Таблица 6

Сопоставление данных по разведанным запасам некоторых химических элементов и их ежегодному накоплению фотоавтотрофами (по Бойченко и др., 1968)

Элемент Концентрируется ежегодно при фотосинтезе, т Мировые запасы сырья, т Углерод 1011 1012 Фосфор 109 1010 Хром 105 108 Марганец 107 108 Железо 108 1011 Кобальт 105 106 Никель 106 107 Медь 107 108 Цинк 107 107 Молибден 105 106

Концентрационная функция живого вещества к настоящему времени изучена довольно полно. Изучен биологический смысл концентрирования металлов живыми организмами, в частности микроорганизмами. Делаются успешные попытки выразить в цифрах концентрационную функцию живого вещества. Так, по оценке профессора Всеволода Всеволодовича Добровольского, общая масса зольных элементов, вовлекаемая ежегодно в биотический круговорот на суше, составляет около 8 млрд. т. Это в несколько раз превышает величину ионного стока с континентов или массу продуктов извержений всех вулканов мира на протяжении года. А ученица и продолжательница дела В. И. Вернадского доктор биологических наук Евгения Александровна Бойченко и ее соавторы сопоставили данные по разведанным запасам некоторых элементов (цифры 1968 г.) с их ежегодным накоплением фотоавтотрофами (табл. 6). Как видно из этих данных, ежегодно растительный покров нашей планеты концентрирует количества минерального вещества, для большинства элементов сопоставимые с их запасами в литосфере, накопленными за миллионы лет геологической истории. Я думаю, что это лучшая иллюстрация к словам В. И. Вернадского, произнесенным в 1935 г.: «Биогеохимическая энергия является по быстроте концентрации твердого вещества из рассеянного его состояния, вероятно, величайшей силой — в аспекте геологического времени, — какая существует на нашей планете»[51].

Изучение концентрационной функции живого вещества имеет не только научное значение. Оно используется и в практической работе геологов, в частности в форме биогеохимического метода поисков рудных месторождений. Идея его проста: растения, произрастающие над месторождениями, должны концентрировать в своих органах рудные элементы. Следовательно, на основании изучения химического состава золы растений в принципе можно вести геологические поиски.

Начиная с 30‑х годов сотрудники БИОГЕЛа начали испытывать биогеохимический метод поисков на Южном Урале для обнаружения повышенных концентраций цветных металлов; на Дальнем Востоке оконтуривание арсенопиритовых месторождений производил С. М. Ткалич. В те же годы шведские геологи Н. Брундин и С. Палмквист по данным химического состава золы листьев лесных деревьев пытались выявить месторождения платины, золота, вольфрама и других металлов. Эти пионерские работы доказали высокую эффективность биогеохимического метода поисков. В настоящее время он находит широкое применение в СССР, США и Скандинавских странах. Значительные открытия с помощью биогеохимического метода поисков были сделаны и в Канаде, где по повышенному содержанию молибдена в растениях было выявлено крупное молибденовое месторождение Эндако.

Третья основная функция живого вещества в биосфере — деструктивная — проявляется на стадии гипергенеза и выражается в деструкции неживого вещества и его вовлечении в биотический круговорот.

В предыдущих главах уже говорилось о многократном использовании живым веществом элементов, вовлеченных в биотический круговорот. Однако проблема заключается в том, что живое вещество не может использовать нужные ему элементы в каком попало виде: органическая составляющая необиогенного вещества должна быть разложена до простых неорганических соединений — углекислого газа, воды, сероводорода, метана, аммиака и т. д. Разложением отмершей органики, как мы знаем, занимается целая армия сапротрофов. Значительную часть органики полностью минерализуют и некротрофы.