Вы читаете книгу
Геном человека. Энциклопедия, написанная четырьмя буквами
Тарантул Вячеслав Залманович
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Геном человека. Энциклопедия, написанная четырьмя буквами - Тарантул Вячеслав Залманович - Страница 6
В то время уже существовал хорошо известный путь, который, в частности, был проделан в свое время французом Жаном Шампольоном при дешифровке иероглифов древнего Египта. В качестве основного подспорья для решения стоящей перед ним задачи он использовал базальтовую плиту, которую обнаружили во время военной компании Наполеона в Египет и которая получила название Розеттский камень. На плите одновременно присутствовали две надписи: одна была иероглифическая, а другая — сделанная греческими буквами на греческом языке. К счастью, и язык, и письмо древних греков были в то время уже хорошо известны ученым. В результате сравнение двух текстов Розеттского камня привело к расшифровке египетской иероглифики. Этим путем и двинулись ученые при расшифровке генетического кода. Надо было сравнить два текста: текст, записанный в ДНК, с текстом, записанным в белке. Однако первоначально ученые не умели «читать» ДНК, а одного известного в то время белкового текста было недостаточно. Пришлось искусственно синтезировать разнообразные короткие фрагменты РНК и синтезировать на них в искусственных системах фрагменты белка. Весной 1961 года в Москве на Международном биохимическом конгрессе М. Ниренберг сообщил, что ему удалось «прочесть» первое «слово» в ДНКовом тексте. Это была тройка букв — ААА (в РНК, соответственно, УУУ), то есть три аденина, стоящие друг за другом, — которая кодирует аминокислоту фенилаланин в белке. Так было положено начало расшифровке генетического кода.
Такой путь в конечном итоге вскоре привел к полной расшифровке генетического кода. Подтвердилось предположение Гамова, что код триплетный: одной аминокислоте в белках соответствует последовательность из 3 нуклеотидов в ДНК и РНК. Такие кодирующие тройки нуклеотидов — «слова» — получили название кодонов.
Напомним, что еще Гамов столкнулся с парадоксом: из четырех нуклеотидов может быть построено 64 разных кодонов, а для построения белков используется только 20 различных аминокислот. Решение этого парадокса оказалось в следующем. Большинство аминокислот может кодироваться несколькими кодонами. После выяснения этого обстоятельства генетический код назвали вырожденным.
В таблице 1 приведены кодоны, но не в самой ДНК, а в РНК-посреднике (матричной РНК, или мРНК), образующейся на ДНК, и соответствующие им аминокислоты в белках.
Кроме того, как видно из таблицы, реально для кодирования используются не все возможные кодоны. Три из этих «лишних» кодонов выполняют функцию стоп-сигналов, обеспечивая прекращение синтеза белковой цепи.
Если внимательно посмотреть на таблицу 1, то видно, что вырожденность генетического кода носит не совсем случайный характер. Хотя код триплетный, основную нагрузку несут первые два нуклеотида в каждом кодоне. Чаще всего в разных кодонах, кодирующих одну и ту же аминокислоту, отличается лишь третий нуклеотид.
Таблица 1. Генетический словарь. Указаны аминокислоты, встречающиеся в белках, и соответствующие им кодоны в комплементарной ДНК матричной РНК
Генетический код первоначально был расшифрован у таких простых организмов, как фаги и бактерии. В дальнейшем оказалось, что он универсален (за очень редким исключением) для геномов всех существующих ныне живых организмах (от бактерий до человека). Небольшие отличия, о которых мы поговорим далее, были выявлены при сравнении ядерного и митохондриального геномов.
Итак, как в привычном нам тексте книги, вся информация записана в ДНК последовательностью расположения четырех составляющих ее «букв» — нуклеотидов. Таким образом, ДНКовый текст написан с помощью А, Т, Ц, Г-алфавита. При этом только текст одной из двух цепей ДНК обычно кодирующий, а другая цепь, как правило, некодирующая. Хотя известно, что в каждом правиле есть исключения. Если читатель попробует написать этими четырьмя буквами какие-нибудь русские слова, то у него ничего не получится. «Словом» в ДНКовом тексте, условно говоря, служит определенное сочетание трех нуклеотидов, которому соответствует конкретная аминокислота в белке, являющемся также полимером. Таким образом, в клетке четырьмя буквами записано два десятка «слов» (аминокислот — составных частей белков). И, наконец, как «предложение» в ДНКовом тексте можно рассматривать полный набор триплетов, кодирующих определенный белок, то есть ген. Таким образом, генетический алфавит состоит всего из 4 букв, а генетический словарь из 20 слов. В этой связи вспомним, что даже словарь Эллочки-людоедки из романа И. Ильфа и Е. Петрова «Двенадцать стульев» состоял из 30 слов, а «Словарь языка произведений А. С. Пушкина» насчитывает примерно 20 тыс. слов.
Существует строгая закономерность: чем длиннее код (чем больше в нем знаков), тем короче тексты. Огромный по размерам код представляют собой, например, китайские иероглифы. В результате этого иероглифические тексты существенно более кратки по сравнению с другими системами письма, в том числе и нашей. Однако для создания генетического кода природа выбрала всего 4 «буквы». Такой код предполагает наличие длинных текстов, что и реализовалось природой в виде создания гигантских молекул ДНК. При написании полного «текста» генома человека потребовалось около 3,2 млрд. «букв». Для сравнения: в священной книге Бытия, написанной на древнееврейском языке, содержится всего 78100 букв.
Размножение ДНК (репликация)
Важно то, что структура ДНК, открытая Уотсоном и Криком, многое прояснила относительно разных механизмов функционирования этой молекулы в клетке. ДНК не только кодирует генетическую информацию, но и самовоспроизводится (удваивается) при каждом клеточном делении. И вскоре уже было экспериментально установлено, что одновременно с делением клетки ДНК снимает с самой себя точные копии в процессе удвоения, или репликации. Во время клеточного деления слабые связи между двумя цепями двойной спирали ДНК разрушаются, в результате чего нити разделяются. Затем на каждой из них строится вторая «дочерняя» (комплементарная) цепь ДНК. В результате этого молекула ДНК удваивается, как и клетка, и в обеих клетках оказывается по одной полной копии ДНК. Копии должны быть полностью идентичными, чтобы сохранить всю генетическую информацию.
Процесс репликации играет ключевую роль в сохранении одной и той же генетической информации в разных клетках, образующихся при их делении. В общем виде художественно он изображен на рис. 5. Однако реальные механизмы репликации довольно сложны, и до настоящего времени еще не все тонкие детали этого процесса известны, особенно применительно к геномам высших животных организмов, включая человека.
Рис. 5. Схема репликации ДНК
В общем виде этот процесс выглядит следующим образом. В каждой хромосоме ДНК удваивается не с начала до конца, а отдельными кусками (репликонами). Средний размер репликона составляет около 30 мкм. Тем самым в составе генома человека должно встречаться более 50 000 репликонов, участков ДНК, которые синтезируются в ядре как независимые единицы. И это имеет свой глубокий смысл. Если бы каждая из молекул ДНК удваивалась как один репликон от начала до конца молекулы, то при скорости синтеза 0,5 мкм в минуту (а она именно такова у человека) удвоение первой хромосомы, имеющей длину ДНК около 7 см, занимало бы 140 000 минут, или около трех месяцев. На самом деле благодаря полирепликонному строению молекул ДНК весь процесс занимает всего 7–12 часов. Отдельные относительно короткие репликоны соединяются друг с другом, обеспечивая этим процесс воспроизведения целой молекулы ДНК.
Перезапись генетического текста и перевод в белковый текст (транскрипция и трансляция)
В клетке ДНК служит в качестве матрицы, на которой первоначально происходит синтез разных РНК. Процесс перезаписи генетической информации из ДНК в РНКовый текст получил название транскрипция. Этот процесс, как и репликация ДНК, осуществляется в ядрах клеток. Первоначально на генах, кодирующих белки, образуются РНК-предшественники, которые после ряда модификаций превращаются в так называемые матричные РНК (мРНК). Они-то непосредственно и служат матрицей для синтеза белков, то есть их кодируют. Установлено, что мРНК служат не только носителями ДНКовой информации, но и переносчиками этой информации из ядра в цитоплазму клетки. Только там мРНК может играть роль матрицы для синтеза белковых молекул (этот процесс назван трансляцией). В цитоплазме на специфических «машинах» — рибосомах — осуществляется при трансляции мРНК синтез молекулы белка, т. е. происходит перевод информации с четырехбуквенного языка мРНК на двадцатибуквенный язык белка. Схематически этот процесс изображен на рис. 6.
- Предыдущая
- 6/91
- Следующая