Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Современная космология: философские горизонты - Коллектив авторов - Страница 37
Надо ещё отметить, что у астрофизиков и космологов проблема чёрных дыр вызывает наибольшую озабоченность в теоретическом плане — в плане отрешения от сингулярных точек. Один из методов отрешения сводится к некоторому способу, который можно было бы назвать способом утешения. Я имею в виду гипотезу космической цензуры, которая была сформулирована в 1969 году Р. Пенроузом. Состоит она в том, что «не может быть голых сингулярностей»: неполнота пространства-времени не должна «столь сильно противоречить нашим интуитивным идеям детерминизма и предсказания»[157]. «Не может быть голых сингулярностей» означает, что должен существовать какой-то фактор, препятствующий их появлению. Поскольку такого фактора найти не удалось, была выдвинута гипотеза слабой космической цензуры. Последняя утверждает, что если сингулярность и существует, то таковая не видна «асимптотическому наблюдателю», т. е. нет лучей света, которые уходят на бесконечность из точек, в которых сингулярность может быть обнаружена.
Мне представляется, что проблема чёрных дыр не может быть решена при абстрагировании от принципов неклассической термодинамики, оперирующей понятиями положительной и отрицательной температуры в смысле абсолютной шкалы Кельвина. В теории Логунова космологический колебательный процесс должен был бы приво-дить к общему росту энтропии во Вселенной. Спасением от этого роста, по автору, служит то обстоятельство, что разработанная им модель Вселенной не является замкнутой в виду плоского пространства. Но тогда возникает вопрос о сущности космологического горизонта. А ведь космологический горизонт сродни шварцшильдовской сфере чёрной дыры. При выборе геометрии Лобачевского космологический горизонт имеет вполне естественную геометрическую интерпретацию, при которой линия горизонта отождествляется с множеством бесконечно удалённых точек, принадлежащих с двух сторон каждой геодезической, расположенной на плоскости Лобачевского. Каждые две бесконечно удалённые точки, принадлежащие одной и той же геодезической, соединяются с другой стороны мнимой линией. Это есть как раз образец мнимой протяжённости, имеющий место в чёрной дыре наряду с мнимой временной длительностью.
Всё же можно сказать, что имеющиеся в РТГ недостатки, касающиеся её космологических предсказаний, вполне могут быть устранены при некотором усовершенствовании методики, на основании которой она строится. Путь усовершенствования — учёт принципов неклассической термодинамики, квантовой физики (релятивистской квантовой механики) и неевклидовой геометрии Лобачевского.
В заключение мне хотелось бы поблагодарить акад. A.A. Логунова за ту помощь, которую он оказал мне при подготовке данной статьи к публикации. Сделанные им критические замечания учтены в тексте статьи. Помимо этого, ценным для меня является следующее сообщение Анатолия Алексеевича. Начата работа над созданием того варианта РТГ, при котором в качестве естественной геометрии кладётся в основу теории геометрия Лобачевского. Будем надеяться, что эта работа получит своё завершение, и космология станет на более прочные ноги.
2. МЕТОДОЛОГИЧЕСКИЕ И ОНТОЛОГИЧЕСКИЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ КОСМОЛОГИИ
А.Д. Панов
МЕТОДОЛОГИЧЕСКИЕ ПРОБЛЕМЫ КОСМОЛОГИИ И КВАНТОВОЙ ГРАВИТАЦИИ
Методология физики и примыкающих к ней научных дисциплин возникла и развивалась преимущественно на основе философского осмысления опыта лабораторных исследований и наблюдений над регулярно повторяющимися небесными (астрономическими и метеорологическими) явлениями. В частности, в этом контексте очень полезными и эффективными оказались такие методологические принципы, как принцип наблюдаемости и принцип воспроизводимости эксперимента. Методология оказалась хорошо адаптированной именно к такому контексту, и она неявно предполагает, что другого контекста не существует.
Согласно принципу наблюдаемости, результаты физических теорий должны быть сформулированы в терминах, которые могут быть определены операционально, то есть прямо связаны с некоторой процедурой измерения. Иными словами, любая теория должна быть сформулирована в терминах измеримых величин, а сами измеримые величины приобретают смысл в рамках определенных теоретических моделей. Во избежание недоразумений надо отметить, что некоторые ингредиенты теории, возникающие на промежуточных этапах в ее математическом аппарате, могут прямо не соответствовать никаким наблюдаемым величинам. Таков, например, произвольный фазовый множитель перед волновой функцией в квантовом механике или точное значение потенциалов электромагнитного поля в электродинамике. Часто такие величины связаны с разными типами калибровочной инвариантности или калибровочной свободы, но могут появляться и по другим причинам. Принцип наблюдаемости показал свою исключительную эффективность, например, в анализе смысла понятия времени и одновременности при создании теории относительности, и в обсуждении принципа неопределенности (микроскоп Гейзенберга) и дополнительности во времена становления квантовой теории.
По нашему мнению, приведенная выше формулировка принципа наблюдаемости не только достаточно точно отвечает тому, как этот принцип был использован при создании специальной теории относительности и квантовой механики, но и практически точно таким же способом он используется в квантовой теории поля и в общей теории относительности (ОТО), пока речь не идет о космологических моделях. Становление принципа наблюдаемости в физике связано, в основном, с именами Гейзенберга и Эйнштейна, и соответствующие формулировки приведены, в частности, в статье Гейзенберга, где он, в числе прочего, описывает свое обсуждение принципа наблюдаемости с Эйнштейном. Одна сторона принципа наблюдаемости, а именно, то, что теории должны формулироваться в терминах наблюдаемых величин, сформулирована в упомянутой статье на стр. 303 Гейзенбергом как «…мысль об описании явлений только с помощью наблюдаемых величин». Вторая сторона принципа наблюдаемости — что сами измеримые величины приобретают смысл только в рамках определенных теоретических моделей — была сформулирована Эйнштейном, слова которого Гейзенберг приводит там же: «Можно ли наблюдать данное явление или нет — зависит от вашей теории. Именно теория должна установить, что можно наблюдать, а что нельзя». Однако, отношение Эйнштейна к принципу наблюдаемости было сложным. Он, в частности, заметил, что «…каждая разумная теория должна позволять измерять не только прямо наблюдаемые величины, но и величины, наблюдаемые косвенно», и, по словам Гейзенберга, неодобрительно отзывался о принципе наблюдаемости в целом. Эйнштейн не определил точно, что следует понимать под косвенными измерениями в общем случае, поэтому не полностью понятно, что он имел в виду. Вопрос о косвенных наблюдениях не прост, и он будет иметь большое значение в нашем последующем обсуждении.
Согласно принципу воспроизводимости эксперимента, научную информацию дает только такой эксперимент (или наблюдение), который (по крайней мере в принципе) может быть повторен неограниченное число раз и дает при этом повторяющиеся (воспроизводящиеся) результаты. Однако принцип воспроизводимости имеет отношение не только к интерпретации экспериментальных результатов. С этим принципом в теории тесно связано понятие ансамбля систем, которое является ядром многих теоретических схем. Воспроизводимость эксперимента подразумевает возможность иметь неограниченное количество копий изучаемой системы в заданном состоянии, над которыми можно проводить заданное измерение. Такое потенциально неограниченное число копий системы в заданном состоянии называется ансамблем. Важно отметить, что воспроизводимость в физике не обязательно означает точную повторяемость результатов измерений (в пределах ожидаемых ошибок) над системой в одном и том же исходном состоянии, но может означать лишь статистическую устойчивость средних значений или вероятностных распределений величин. В этом случае различные серии измерений должны приводить к одинаковым статистическим результатам в пределах ожидаемых флуктуаций статистики. Именно такой тип измерений над ансамблем и само существование ансамблей принципиально важны для формулировки квантовой теории, так как только в рамках ансамбля систем можно сделать ясным и недвусмысленным понятие средних значений и вероятностей, в терминах которых и формулируется связь квантовой теории с экспериментом. Следует добавить, что принцип воспроизводимости эксперимента и существование ансамблей определяет возможность измерений, в принципе, с любой наперед заданной точностью, так как статистические ошибки могут быть сделаны как угодно малыми за счет неограниченного увеличения статистики. Таким образом, интерпретация принципа наблюдаемости как измеримости, в принципе, с любой наперед заданной точностью зависит от принципа воспроизводимости.
- Предыдущая
- 37/96
- Следующая
