Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Логика и аргументация: Учебное пособие для вузов. - Рузавин Георгий Иванович - Страница 7
Но какая же из этих геометрий истинна? На этот вопрос можно получить ответ, только сопоставив их результаты с данными экспериментальных физических исследований, например измерив сумму внутренних углов треугольника, две вершины которого находятся на Земле, а третья, скажем, на Сириусе или иной звезде. Но для наших земных и околоземных расстояний расхождения между теорией и опытом пренебрежимо малы. Этот примечательный случай из истории геометрии показывает, насколько важно отличать логическую правильность от фактической истинности, когда речь идет о применении абстрактных теорий к реальному миру. Если логическая правильность, или, как говорят математики, непротиворечивость теории, может быть установлена логико-математическими методами, то ее фактическая истинность требует обращения к эмпирическим методам исследования, которые как раз и обнаруживают соответствие или расхождение выводов теории с действительностью.
1.5. Логика и язык
Язык, как известно, представляет собой средство коммуникации, общения между людьми, с помощью которого они обмениваются друг с другом мыслями, той или иной информацией. Мысль находит свое выражение именно в языке, без такого выражения мысли одного человека оказываются недоступными другому.
Главная цель логики состоит в том, чтобы найти правила и принципы обоснованных рассуждений. В доказательных рассуждениях мы опираемся на правила дедуктивных умозаключений, которые при истинных посылках гарантируют получение достоверно истинных заключений. В правдоподобных рассуждениях мы стремимся с помощью соответствующих аргументов (доводов) подтвердить и обосновать свои заключения. Оперируя понятиями и суждениями, мы абстрагируемся в логике от целого ряда условий и обстоятельств, поскольку нашей задачей является сохранение, передача и преобразование истины. По сути дела основная задача логики состоит в том, чтобы сформулировать правила преобразования информации, т.е. из имеющейся информации получить новую информацию. Именно для этой цели и предназначены рассуждения, или умозаключения, содержащие в своем составе различные посылки, состоящие из суждений, которые в свою очередь состоят из понятий.
Для выражения всех этих элементов рассуждения служат различные средства языка. Понятия выражаются посредством отдельных слов или словосочетаний, суждения и умозаключения - с помощью простых или сложных предложений. Поэтому логический анализ рассуждений тесно связан с анализом языка, хотя отнюдь не сводится к последнему. Действительно, при логическом анализе суждений мы интересуемся его логической структурой, а не грамматической формой. Поэтому выделяем в суждении те элементы, которые имеют существенное значение для его характеристики с точки зрения истинности и ложности. В строгом смысле слова только суждения могут рассматриваться как истинные или ложные, ибо именно они могут верно или неверно, адекватно или неадекватно относиться к действительности. Предложения же хотя и используются для выражения суждений, сами по себе не могут рассматриваться как истинные или ложные. Более того, существуют в нашем языке такие предложения, которые служат не для выражения суждений, а представляют собой вопросы, повеления и т.п. Подробнее о них речь пойдет в гл.3, здесь же нам хотелось бы обратить внимание на различие между логическим и грамматическим анализом.
Почему так важен логический анализ, какую роль он играет в повседневном и особенно научном познании?
1. Поскольку язык развивался как средство коммуникации и взаимопонимания между людьми, постольку он главным образом совершенствовался для быстрой передачи информации, увеличения объема передаваемых сообщений, иногда даже за счет неточности и неопределенности их смысла. Это особенно характерно для образного языка ораторской и художественной речи, которая изобилует сравнениями, метафорами, синонимами и омонимами и другими языковыми средствами, придающими ей особую окраску, эмоциональность, наглядность и выразительность. Но все это значительно затрудняет логический анализ языка, а иногда и затрудняет понимание речи.
2. Как универсальное средство для коммуникации и обмена мыслями и информацией, язык выполняет множество функций, которые не интересуют логику. Логика, напротив, стремится как можно точнее передать и преобразовать существующую информацию и тем самым устранить некоторые недостатки естественного языка путем создания искусственных формализованных языков. Такие искусственные языки используются прежде всего в научном познании, а в последние годы они нашли широкое распространение в программировании и алгоритмизации различных процессов с помощью компьютеров. Достоинство подобных языков состоит прежде всего в их точности, однозначности, а самое главное - в возможности представления обычного содержательного рассуждения посредством вычисления.
Формализация рассуждения состоит в представлении его посредством символов и формул искусственного (формализованного) языка, в котором перечисляются, во-первых, исходные формулы, выражающие основные утверждения содержательной теории, во-вторых, первоначальные понятия, которые фигурируют в этих утверждениях, и, в-третьих, явно указываются те правила вывода или преобразования, с помощью которых в содержательных теориях получают теоремы из аксиом, а в формальных теориях исходные формулы преобразуют в производные. Нетрудно заметить, что формализация рассуждения происходит в соответствии с требованиями аксиоматического метода, знакомого нам из школьного курса геометрии. Разница состоит только в том, что вместо понятий и суждений в ней используются символы и формулы, а логический вывод теорем из аксиом заменяется преобразованием исходных формул в производные. Таким образом, при полной формализации содержательное мышление (рассуждение) его отображается в формальном исчислении. Кроме формализованных языков логики и математики, к искусственным научным языкам относят также языки тех наук, в которых широко используются символы и формулы. Типичным является, например, язык химических символов и формул. Однако в таких языках символы и формулы служат для более компактной и краткой записи соответствующих понятий и утверждений. Так, в химии символы употребляются для записи химических элементов или простых веществ, а формулы - для записи их соединений и сложных веществ. Но само рассуждение проводится как обычно на содержательном уровне.
Какую роль играет формализация в научном познании вообще и в логике в особенности?
1. Формализация дает возможность анализировать, уточнять, определять и эксплицировать (разъяснять) понятия. Интуитивные понятия хотя и кажутся более ясными и очевидными с точки зрения здравого смысла, оказываются не подходящими для научного познания в силу их неопределенности, неоднозначности и неточности. Так, например, понятия непрерывности функции, геометрической фигуры в математике, одновременности событий в физике, наследственности в биологии и многие другие существенно отличаются от тех представлений, которые они имеют в обыденном сознании. Кроме того, некоторые исходные понятия обозначаются в науке теми же словами, которые употребляются в разговорном языке для выражения совершенно других вещей и процессов. Такие основополагающие понятия физики, как сила, работа и энергия, отображают вполне определенные и точно указанные процессы: например, сила рассматривается в физике как причина изменения скорости движущегося тела, а работа - как произведение силы на путь. В разговорной речи им придается более широкий, но неопределенный смысл, вследствие чего физическое понятие, например работы, неприменимо к характеристике умственной деятельности. Но даже в науке смысл и значение вводимых понятий со временем изменяется, уточняется и обобщается.
2. Формализация приобретает особую роль при анализе доказательств. Представление доказательства в виде последовательности формул, получаемых из исходных с помощью точно указанных правил преобразования, придает ему необходимую строгость и точность. При таком подходе исключаются ссылки на интуицию, очевидность или наглядность чертежа, так что при соответствующей программе доказательство можно передать вычислительной машине. О том, какое значение имеет строгость доказательства, свидетельствует история попыток доказательства аксиомы о параллельных в геометрии, когда вместо такого доказательства сама аксиома заменялась эквивалентным утверждением. Именно неудача подобных попыток заставила Н.И. Лобачевского признать невозможным такое доказательство.
- Предыдущая
- 7/76
- Следующая
