Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Химия в бою - Коллектив авторов - Страница 14


14
Изменить размер шрифта:

Надо сказать, что в общих чертах идея топливных элементов зародилась давно, более 100 лет назад. Однако осуществить ее оказалось гораздо сложнее, чем предполагали вначале. Лишь многолетнее развитие электрохимической теории, достижения металлургии, автоматики и других отраслей науки и техники позволили в последние годы создать топливные элементы, пригодные для практического использования.

Горение без пламени

Полыхает костер, бушует в печи пламя… Каждый повседневно встречается с таким горением и знает, что оно сопровождается высокой температурой. А химик добавит, что при подобном химическом горении происходит окислительно-восстановительный процесс между горючим веществом (топливом) и окислителем (кислородом). При этом атомы топлива окисляются, то есть теряют электроны, а атомы окислителя восстанавливаются — наоборот, приобретают электроны.

Такие окислительно-восстановительные процессы характеризуются случайным перемещением атомов и молекул окислителя и топлива, между которыми идет непрерывный обмен электронами. Что это значит с энергетической точки зрения?

Известно, что энергетический уровень атомов определяется строением их внешней электронной оболочки, которая может иметь определенное количество электронов. Атомы горючих и окислительных веществ имеют внешние оболочки, заполненные электронами не полностью. Если взять горючим водород, то у него на внешней оболочке «недостает» одного электрона, хотя оболочка позволяет иметь два. В атоме же окислителя — кислорода «не хватает» двух электронов (до восьми). Заполнение внешней оболочки электронами вызывает уменьшение энергетического уровня атома. Таким образом, обмен электронами между атомами топлива и окислителя в процессе горения можно рассматривать как переход электронов с высшего энергетического уровня на низший. А он сопровождается высвобождением энергии в виде тепла, которое, как уже было сказано, невозможно полностью обратить в полезную работу

Важно отметить и другое. Поскольку обмен электронами при химическом горении происходит хаотично — с различными скоростями и в различных направлениях, — возникновение электрического тока исключается. Тут, если так можно выразиться, идет процесс бесчисленного множества «коротких замыканий» между атомами и молекулами, имеющими различные электрические потенциалы.

Другое дело, если исключить хаотическое перемещение электронов, сообщить им направленное движение. Тогда энергия реакции почти полностью пойдет на образование электрической энергии. Химическое горение топлива с высокой температурой, таким образом, превратится в холодное, электрохимическое. В горение без пламени. Именно оно и используется в топливных элементах для получения постоянного электрического тока.

Топливный элемент во многом напоминает обычный гальванический: те же два специально обработанных металлических электрода, разделенные электролитом. Отличие в том, что к одному электроду топливного элемента непрерывно подводится топливо, а к другому — окислитель, и так, что исключена возможность их смешивания.

Рис. 11. Принципиальная схема устройства водородно-кислородного топливного элемента:
1 — корпус; 2 и 4 — выводы электродов; 5 — канал для подвода кислорода; 6 и 9 — электроды; 7 и 3 — каналы для электролита; 8 — изоляционная прокладка; 10 — канал для подвода водорода

Принципиальное устройство топливного элемента удобно проиллюстрировать на водородно-кислородном элементе (рис. 11). Пространство корпуса 1 разделяется электродами 6 и 9. По каналу 10 в пространство Н подается водород — топливо, а по каналу 5 в пространство О2 подается кислород — окислитель. Через каналы 7 и 5 пропускается электролит — концентрированный раствор едкого калия (КОН).

На кислородном электроде 6 кислород поглощается. В результате процессов его взаимодействия с водой, находящейся в электролите, и электронами из металла электрода образуются ионы гидроксильной группы ОН. Кислородный электрод, потерявший электроны и оказавшийся обедненный ими, принимает положительный потенциал.

На водородном электроде 9 поглощается водород. Он переходит из молекулярного состояния в атомарное. Поглощенные атомы ионизируются и переносятся в электролит, оставляя электроны на электроде. Водородный электрод оказывается обогащенным электронами и принимает отрицательный потенциал.

Суммарная реакция на кислородном электроде может быть представлена формулой:

O2 + 2Н2O + 4е— → 4OН;

а на водородном электроде:

Н2 → 2Н+ + 2е—

(знаком «е—» обозначены электроны).

Итак, на водородном электроде получается избыток электронов (отрицательный потенциал), а на кислородном— недостаток (положительный потенциал). Возникает разность так называемых равновесных потенциалов электродов, которая и составляет электродвижущую силу топливного элемента. Если подключить к электродам топливного элемента нагрузку, она получит электрическую энергию. Ток между электродами внутри элемента потечет за счет движения ионов, которые нарушат равновесное состояние среды и вовлекут в процесс ионизации топливо и окислитель.

В качестве топлива (горючего) вместо чистого водорода могут быть использованы вещества, богатые водородом: спирты, жидкие и газообразные углеводороды, гидразин, аммиак, гидриды некоторых металлов, муравьиная кислота и другие водородосодержащие вещества. Из окислителей помимо кислорода могут применяться перекись водорода, азотная кислота, галогены (галоиды).

Из-за того что поиск наиболее целесообразных и экономичных решений топливных элементов идет в электрохимии широким фронтом, появились различные их типы: например, низко-, средне- и высокотемпературные; с твердым, жидким и газообразным горючим; с водными электролитами (растворами щелочей и кислот), с расплавленными электролитами (солями), с твердыми электролитами.

Для практического применения топливные элементы составляются в блоки, а блоки — в батареи. Батареи оснащаются вспомогательными устройствами и компонуются в электрохимические агрегаты (рис. 12). Вспомогательные системы — это системы хранения и подачи топлива, окислителя, регулирования режима работы, отвода продуктов реакции, система охлаждения, распределительное устройство электрической энергии. Если потребителям электрической энергии требуется кроме постоянного тока еще и переменный или только переменный ток, то в состав электрохимического агрегата входит преобразователь тока.

Рис. 12. Электрохимический агрегат:
1 — капот; 2— топливный элемент; 3 — бак для водорода; 4 — бак для кислорода, 5 — основание агрегата; 6 — распределительная панель
Соперник ядерного реактора

Специалисты особо отмечают высокую экономичность топливных элементов. Ведь теоретически коэффициент их полезного действия достигает 85 и более процентов. Это в 2–3 раза выше, чем, скажем, у электромашинных агрегатов. Кроме того, подчеркивалось в печати, электрохимические агрегаты проще и удобнее в эксплуатации, чем другие источники электроэнергии. Они постоянно готовы к действию, не расходуют топлива при отключенной электрической нагрузке. При работе топливные элементы не создают вибраций, шума, не производят выхлопных газов и сильного тепловыделения, что облегчает их использование в герметизированных кабинах и помещениях.

Достоинства топливных элементов, успехи их практической разработки за последние годы сделали подобные устройства объектом повышенного внимания специалистов. Считают, что их создание представляет собой крупнейшее научно-техническое достижение после овладения атомной энергией, им прочат не меньшее будущее. Особенно много прогнозов высказывает буржуазная печать относительно перспектив военного применения новых источников электроэнергии. Это и не удивительно. Ведь милитаристские круги империалистических государств стремятся использовать прогресс науки и техники прежде всего именно в этих целях.