Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Химический язык насекомых - Балаян Валерий Михайлович - Страница 22
Однако даже самый совершенный газовый хроматограф не позволяет расшифровать структуру молекул изучаемых веществ. Для того чтобы установить полный «портрет» феромона, химики обращаются за помощью к таким физическим методам, как масс-спектрометрия, инфракрасная спектроскопия, электронные спектры поглощения как в видимой, так и в ультрафиолетовой областях, а также ядерному парамагнитному резонансу.
Масс-спектрометрия — самый чувствительный из методов, позволяющих исследовать структуру молекул. Ведь для такого анализа исследователю достаточно располагать следовыми количествами феромонов — 10–9 г. На чем же основан принцип этого метода? В специальном приборе масс-спектрометре на пары исследуемого вещества воздействуют пучком быстрых электронов, которые ионизируют молекулы и превращают их в положительно заряженные ионы. Затем магнитное поле делит полученные частицы на молекулярные и осколочные ионы, которые регистрируются с помощью коллектора и системы усиления сигналов. На ленте прибор выписывает пики, которые соответствуют ионам с определенным отношением массы к заряду. Соответствующая обработка полученных результатов позволяет ученым идентифицировать тот или иной компонент феромона.
В последнее время широкое распространение получили приборы, созданные путем слияния двух методов: газо-жидкостной хроматографии и масс-спектрометрии. Компьютеры этих электронных роботов, получивших название «хроммассов», располагают огромной памятью о спектрах уже известных веществ, и поэтому для идентификации исследуемых компонентов химического языка насекомых не требуется много времени. Современные приборы позволяют анализировать практически почти все известные классы органических соединений. Для проведения анализа достаточно располагать всего лишь 10–9 г вещества.
Довольно часто обращаются химики к методу инфракрасной спектроскопии, который позволяет определить в молекуле такие функциональные группы, как C=0, C=C, OH и другие. Этот метод возник после первых опытов Исаака Ньютона по разложению солнечного света на разноцветные полоски. Дальнейшие исследования спектров атомов и молекул позволили немецким ученым Р. В. Бунзену и Г. Р. Кирхгофу изобрести спектральный метод анализа. Благодаря ему ученые узнали химический состав Солнца, многих звезд и туманностей. Для инфракрасной спектроскопии необходимо располагать несколькими миллиграммами исследуемого вещества, чтобы получить данные о его химической структуре. А вот для того, чтобы снять спектры молекул в видимой или ультрафиолетовой области, нужно иметь и того менее — всего лишь доли миллиграмма. Эти методы позволяют определить в изучаемых объектах наличие хроматофоров и ароматических колец.
При расшифровке структуры феромонов исследователям довольно часто приходится иметь дело с пространственными изомерами молекул. Здесь на помощь химикам приходит метод ядерного парамагнитного резонанса (ЯМР). Он помогает установить расположение в молекуле водорода, фтора и других атомов, обладающих парамагнитными свойствами. К недостатку метода относится необходимость располагать не менее 3...5 мг изучаемого вещества. В 1944 году советский ученый Е. К. Завойский обнаружил явление электронного парамагнитного резонанса (ЭПР). При помощи этого метода можно судить о наличии в молекуле свободных радикалов.
Определенный интерес для аналитиков представляет разработанный на кафедре биофизики МГУ профессором Б. Н. Тарусовым и его сотрудниками метод биохемолюминесценции. При помощи специальной электрохимической ячейки в результате окисления некоторых соединений, например циклических аминокислот, создается постоянный фон сверхслабого свечения. Добавляя в такую среду изучаемое вещество, ученые наблюдают изменение фона свечения и по этим данным судят о свойствах молекул.
Для изучения реакционной и радикальной активности, а также интенсивности различных запахов, советские исследователи А. X. Тамбиев и А. Ш. Агавердиев в 1966 году предложили метод химических моделей, называемый еще методом термоокисления ДОФА. Он заключается в том, что исследуемыми веществами воздействуют на специальные соединения-индикаторы, которые под влиянием последних изменяют такие свои свойства, как интенсивность хемолюминесценции, оптическую плотность, окраску и другие. Довольно часто для регистрации таких воздействий применяют 3,4-диоксифенилаланин (ДОФА). Оптические свойства этого индикатора могут изменяться под влиянием феромонов, что позволяет судить об интенсивности и реакционной способности пахучих молекул.
Используя чудо-технику XX века, исследователи пытаются узнать секреты химического языка насекомых. Расшифровка любого феромона — совсем не простое дело и нередко напоминает работу по расшифровке египетских иероглифов или решение археологических загадок. На этом пути ученых на каждом шагу подстерегают ошибки и удачи, разочарования и находки.
Поэтому успех в расшифровке феромонов насекомых зависит не сколько от технического оснащения, сколько от знаний, опыта, терпения и настойчивости исследователей невидимых кирпичиков здания жизни.
По образу и подобию
Химики-синтетики, работающие над созданием феромонов, часто оказываются в чрезвычайно затруднительном положении. Им гораздо легче изобразить вещество на бумаге, чем получить его в колбе. Даже знания точной формулы молекулы бывает недостаточно для осуществления ее синтеза. Конструкторы молекул должны прекрасно ориентироваться в химическом лабиринте геометрически разноликих формул, чтобы воспроизвести по расшифрованному соединению его копию.
Об одном характерном для химической «кухни» случае рассказал в своем интервью известный специалист химического синтеза Роберт Вудворт.
Как-то к нему из Англии приехал молодой человек с хорошими рекомендациями — он хотел поработать в лаборатории ученого. Вудворт дал ему задание провести довольно простой синтез. Химик выполнил его за две недели. Ученый оценил способности стажера и поручил ему сделать серьезную работу — синтез холестерина. Это соединение было выделено в чистом виде еще в 1812 г. Его молекулы представляют собой стероиды циклического строения и присутствуют почти во всех тканях живого организма. Холестерин — необходимый химический компонент для биосинтеза экдизона — гормона роста насекомых. Однако шестиногие не могут синтезировать его самостоятельно и получают в готовом виде с пищей (потребность в нем у разных видов колеблется от 0,01 до 0,1% массы суточного рациона).
И вот холестерин — очень важный строительный материал для клеточных структур — был синтезирован молодым ученым, будущим профессором химии, Вудвортом и его сотрудниками. Через год после этого события, встретившись с Вудвортом, его бывший стажер признался, что был поражен, услышав от ученого о предстоящем синтезе холестерина, и даже подумал: «Видать, он просто сумасшедший», — но все-таки решил попробовать. Как видно, часто создание сложных молекул даже для химиков кажется невероятной, безумной затеей.
И тем не менее самые недоступные органические соединения были покорены в XX в. Достаточно вспомнить синтез пигмента зеленого листа — хлорофилла или молекул здоровья — различных витаминов. Многие чудодейственные вещества, такие, как хинин, убивающий возбудителя малярии, сульфаниламидные препараты — гроза болезнетворных микроорганизмов, пестициды всех поколений и искусственные красители, подарили человечеству конструкторы органических молекул. В настоящее время химический синтез принял индустриальные масштабы. Подсчитано, что каждый месяц в мире синтезируется не менее 25 тыс. новых соединений.
А было время, когда известный химик И. Я. Берцелиус (1779–1848 гг.) и многие другие считали невозможным искусственно создать органические молекулы без помощи магической «жизненной силы».
- Предыдущая
- 22/32
- Следующая