Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Физика для всех. Молекулы - Китайгородский Александр Исаакович - Страница 20


20
Изменить размер шрифта:

Перегрев - это сдвиг жидкости в область пара, поэтому перегрева жидкости можно добиться как подводом тепла так и уменьшением давления.

Последним способом можно добиться удивительного результата. Вода или другая жидкость, тщательно, освобожденная от растворенных газов (это нелегко сделать), помещается в сосуд с поршнем, доходящим до поверхности жидкости. Сосуд и поршень должны смачиваться жидкостью. Если теперь тянуть поршень на себя, то вода, сцепленная с дном поршня, последует за ним. Но слой воды, уцепившийся за поршень, потянет за собой следующий слой воды, этот слой потянет нижележащий, в результате жидкость растянется.

В конце концов столб воды разорвется (именно столб воды, а не вода оторвется от поршня), но произойдет это тогда, когда сила на единицу площади дойдет до десятков килограммов. Другими словами, в жидкости создается отрицательное давление в десятки атмосфер.

Уже при малых положительных давлениях устойчивым является парообразное состояние вещества. А жидкость можно довести до отрицательного давления. Более яркого примера "перегрева" не придумаешь.

Плавление

Нет такого твердого тела, которое сколько угодно противостояло бы повышению температуры. Рано или поздно твердый кусочек превращается в жидкость; правый, в некоторых случаях нам не удастся добраться до температуры плавления - может произойти химическое разложение.

По мере возрастания температуры молекулы движутся все интенсивнее. Наконец, наступает такой момент, когда поддержание порядка "среди сильно "раскачавшихся" молекул становится невозможным. Твердое тело плавится. Самой высокой температурой плавления обладает вольфрам: 3380°С. Золото плавится при 1063°С, железо - при 1539°С. Впрочем, есть и легкоплавкие металлы. Ртуть, как хорошо известно, плавится уже при температуре -39°С. Органические вещества не имеют высоких температур плавления. Нафталин плавится при 80°С, толуол - при -94,5°С.

Измерить температуру плавления тела, в особенности если оно плавится в интервале температур, которые измеряют обычным термометром, совсем нетрудно. Совсем не обязательно следить глазами за плавящимся телом. Достаточно смотреть на ртутный столбик термометра. Пока плавление не началось, температура тела растет (рис. 4.5). Как только плавление начинается, повышение температуры прекращается, и температура останется неизменной, пока процесс плавления не закончится полностью.

Рис. 4.5

Как и превращение жидкости в пар, превращение твердого тела в жидкость требует тепла. Необходимая для этого теплота называется скрытой теплотой плавления. Например, плавление одного килограмма льда требует 80 ккал.

Лед относится к числу тел, обладающих большой теплотой плавления. Плавление льда требует, например, в 10 раз больше энергии, чем плавление такой же массы свинца. Разумеется, речь идет о самом плавлении, мы здесь не говорим, что до начала плавления свинца его надо нагреть до +327°С. Из-за большой теплоты плавления льда замедляется таяние снега. Представьте себе, что теплота, плавления была бы в 10 раз меньше. Тогда весенние паводки приводили бы ежегодно к невообразимым бедствиям.

Итак, теплота плавления льда велика, но она же и мала, если ее сравнить с удельной теплотой парообразования в 540 ккал/кг (в семь раз меньше). Впрочем, это различие совершенно естественно. Переводя жидкость в пар, мы должны оторвать молекулы одну от другой, а при плавлении нам приходится лишь разрушить порядок в расположении молекул, оставив их почти на тех же расстояниях. Ясно, что во втором случае требуется меньше работы.

Наличие определенной точки плавления есть важный признак кристаллических веществ. Именно по этому признаку их легко отличить от других твердых тел, называемых аморфными или стеклами. Стекла встречаются как среди неорганических, так и среди органических веществ. Оконные стекла делаются обычно из силикатов натрия и кальция; на письменный стол кладут часто органическое стекло (его называют еще плексиглас).

Аморфные вещества в противоположность кристаллам не имеют определенной температуры плавления. Стекло не плавится, а размягчается. При нагревании кусок стекла сначала становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает изменять свою форму под действием собственной тяжести. По мере нагревания густая вязкая масса стекла принимает форму того сосуда, в котором оно лежит. Эта масса сначала густа, как мед, потом - как сметана и, наконец, становится почти такой же маловязкой жидкостью, как вода. При всем желании мы не можем здесь указать определенной температуры перехода твердого тела в жидкое. Причины этого лежат в коренном отличии строения стекла от строения кристаллических тел. Как говорилось выше, атомы в аморфных телах расположены беспорядочно. Стекла по строению напоминают жидкости, Уже в твердом стекле молекулы расположены беспорядочно. Значит, повышение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения. Поэтому стекло размягчается постепенно и не обнаруживает резкого перехода "твердое" - "жидкое", характерного для перехода от расположения молекул в строгом порядке к беспорядочному расположению.

Когда речь шла о кривой кипения, мы рассказали, что жидкость и пар могут, хотя и в неустойчивом состоянии, жить в чужих областях - пар можно переохладить и перевести влево от кривой кипения, жидкость - перегреть и оттянуть вправо от этой кривой.

Возможны ли аналогичные явления в случае кристалла с жидкостью? Оказывается, аналогия тут неполная.

Если нагреть кристалл, то он начнет плавиться при своей температуре плавления. Перегреть кристалл не удастся. Напротив, охлаждая жидкость, можно, если принять некоторые меры, сравнительно легко "проскочить" температуру плавления. В некоторых жидкостях удается достигнуть больших переохлаждений. Есть даже такие жидкости, которые легко переохладить, а трудно заставить кристаллизоваться. По мере охлаждения такой жидкости она становится все более вязкой и наконец затвердевает,не кристаллизуясь. Таково стекло.

Можно переохладить и воду. Капельки тумана могут не замерзать даже при сильных морозах. Если в переохлажденную жидкость бросить кристаллик вещества - затравку, то немедленно начнется кристаллизация.

Наконец, во многих случаях задержавшаяся кристаллизация может начаться от встряски или от других случайных событий. Известно, например, что кристаллический глицерин был впервые получен при транспортировке по железной дороге. Стекла после долгого стояния могут начать кристаллизоваться (расстекловываться, или "зарухать", как говорят в технике).

Как вырастить кристалл

Почти любое вещество может при известных условиях дать кристаллы. Кристаллы можно получить из раствора или из расплава данного вещества, а также из его паров (например, черные ромбовидные кристаллы иода легко выпадают из его паров при нормальном давлении без промежуточного перехода в жидкое состояние).

Начните растворять в воде столовую соль или сахар. При комнатной температуре (20°С) вы сумеете растворить в граненом стакане только 70 г соли. Дальнейшие добавки соли растворяться не будут и улягутся на дне в виде осадка. Раствор, в котором дальнейшего растворения уже не происходит,- называется насыщенным. .Если изменить температуру, то изменится и степень растворимости вещества. Всем хорошо известно, что большинство веществ горячая вода растворяет значительно легче, чем холодная.

Представьте себе теперь,- что вы приготовили насыщенный раствор, скажем, сахара при температуре 30°С и начинаете охлаждать его до 20°С. При 30°С вы смогли растворить в 100 г воды 223 г сахара, при 20°С растворяется 205 г. Тогда при охлаждении от 30 до 20°С 18 г окажутся "лишними" и, как говорят, выпадут из раствора. Итак, один из возможных способов получения кристаллов состоит в охлаждении насыщенного раствора.