Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Заглянем в будущее - Семенов Николай Николаевич - Страница 14


14
Изменить размер шрифта:

Сейчас выполнение многих из этих процедур требует применения человеческого труда — труда квалифицированного и в больших количествах. В ближайшей перспективе этот живой труд должен быть и будет заменен системами, действующими на «цифровых механизмах».

На нескольких примерах попытаемся показать читателю новые идеи, принципы их применения, которые сегодня разрабатываются и совершенствуются, а в недалеком будущем получат широкое применение в машиностроительном производстве.

* * *

Программу для станков с цифровым управлением считает ЭЦВМ. Все данные для подготовки программы сегодня задает человек. Первое, второе, третье, сотое изделие станок обрабатывает по одной и той же программе.

Хорошо, если человек может составить программу так, чтобы получить от станка максимум того, на что этот станок способен в отношении точности и производительности. Было бы хорошо, если бы программист и технолог знали, как будут деформироваться станок, инструмент и изделие в процессе обработки (а такие деформации происходят обязательно). Хорошо, если бы они смогли предсказать, как с течением времени будут изнашиваться резец, фреза или какой либо другой режущий инструмент (а износ инструмента происходит в процессе работы непрерывно). Хорошо, если бы им было известно, как по мере работы разогреваются узлы станка и каково в результате этого нагревания влияние температурных деформаций на результаты работы машины. Вот если бы они все это могли предвидеть и учесть в программе, тогда бы десятое и сотое изделие на станке было бы обработано оптимальным образом. Но ни технолог, ни программист всех этих подробностей не знают сегодня, не будут знать завтра, ни, вероятно, даже в отдаленном будущем. Да и особой необходимости в том, чтобы все это знать во всех подробностях, наверное, не будет.

Создающиеся сейчас так называемые самонастраивающиеся, или адаптивные, системы обеспечат работу станков в оптимальном режиме без вмешательства человека. Они будут уметь накапливать, обрабатывать и использовать информацию для достижения наилучших результатов. Системы специальных измерительных устройств и датчиков, собирающие данные о том, как протекает реальный технологический процесс, как деформируются станок, изделие, режущий инструмент, как изнашивается инструмент и как разогревается вся система, специальные вычислительные устройства, обрабатывающие эту информацию, дадут возможность автоматически корректировать ту исходную программу, которую автомат получил от технолога.

Другими словами, человек как бы задаст автомату цель. А как достичь этой цели, тот научится сам, с помощью искусственных органов чувств и цифровых механизмов. Только первое изделие из партии автомат обрабатывает по программе, заданной человеком. Потом, начиная с этого момента, он начнет накапливать и учитывать опыт работы, совершенствовать программу, обрабатывая второе, третье и последующие изделия с предельной точностью либо в максимальном темпе, либо с наивысшей экономичностью.

Естественно, что тот или иной из этих критериев, которым должен «руководствоваться» автомат в процессе работы, также задает человек. Но весь процесс поиска и настройки на оптимальную реализацию программы, вся та процедура, которая практически неосуществима традиционными методами, то есть на универсальных станках и с участием пусть даже высококвалифицированных операторов, будет выполняться в автоматическом режиме, обеспечивая высокие точности, производительность, экономичность.

Первые опыты по созданию и применению адаптивных систем цифрового управления станками уже проведены. Эти опыты показали высокую эффективность применения такого качественно нового вида оборудования. Несомненно, что в будущем оно получит широкое практическое внедрение.

Но вот изделие обработано по программе. Как убедиться в том, что оно обработано правильно, отвечает во всех подробностях чертежу, заданному конструктором?

Конечно, когда это изделие напоминает простой валик или шайбу, то задача может быть решена сравнительно просто. Если оно выпускается многотысячными, миллионными или миллиардными тиражами, то достаточно поставить специализированные высокопроизводительные контрольные автоматы; в других случаях выгодно обойтись универсальным измерительным инструментом.

Ну а как быть, если изделия обладают сложной конфигурацией, если они становятся все более разнообразными, требования к их точности все повышаются, а сроки изготовления сокращаются и если к тому же недостаточно измерить на этих изделиях 2–3 размера, а необходимо иметь картину точности обработки всех их поверхностей?

Применение традиционных методов контроля, предусматривающих изготовление специальных шаблонов, эталонов, привлечение высококвалифицированных контролеров сопряжены с большими затратами ручного труда, времени и средств, а строить специализированные автоматы для контроля таких изделий так же бессмысленно, как строить специализированные автоматы для их обработки.

Так наметилась еще одна качественно новая область применения техники цифрового управления — контрольные автоматы.

По принципу действия эти машины напоминают станки с цифровым управлением. Только вместо обрабатываемой заготовки на них устанавливаются измеряемые изделия, а вместо режущего инструмента — измерительный орган.

Технолог намечает на изделии все те участки, которые подлежат измерению; программист составляет соответствующую программу. Затем контролируемое изделие устанавливается в исходное положение, и автомат пускается в ход.

Измерительный орган скользит вдоль измеряемых поверхностей. Если эти поверхности выполнены неточно, измерительный орган, а за ним и приборы автомата регистрируют все отклонения. Как только вся программа «проиграна» — готов документ, зафиксировавший с высокой степенью точности всю картину обработки изделия.

Уже сейчас созданы и пришли на производство первые образцы контрольных автоматов с цифровым управлением. Они позволят значительно ускорить операции контроля самых сложных изделий и полностью исключить при этом субъективные ошибки человека, позволят обойтись без калибров, шаблонов и эталонов. Копии программ контроля можно будет рассылать по многим предприятиям, обеспечивая его единообразие и высокое качество.

Можно не сомневаться, что эти машины займут достойное место в области цифровой автоматизации машиностроительного производства.

Итак, самые различные станки, адаптивные системы, контрольные автоматы — агрегаты, оснащенные цифровым управлением. Но ведь их можно использовать не только порознь! Из них можно построить целые автоматические линии и комплексы. Такие автоматические линии будут качественно отличаться от автоматических линий традиционного типа, предназначенных для выпуска большими тиражами одних и тех же изделий. Линия станков, машин и другого оборудования с цифровым управлением, так же как и каждый отдельный ее агрегат, сочетает гибкость и приспосабливаемость универсального оборудования с точностью и производительностью специализированных автоматов.

Опытные линии станков с цифровым управлением уже построены. Представляется очевидной возможность включить в состав этих линий контрольные автоматы и адаптивные системы, значительно расширив тем самым уровень автоматизации машиностроительного производства и повысив его эффективность и качество. Перспективы внедрения линий и комплексов с цифровым управлением в различные отрасли машиностроения в ближайшую четверть века весьма широки и диктуются всем ходом научно-технического прогресса.

Автоматический комплекс с цифровым управлением может охватить не только процессы обработки и контроля изделий машиностроения.

Представим себе сборочный цех. Пусть здесь идет поточная сборка автомобилей (или других машин). Эта картина впечатляет своей ритмичностью: столько-то минут — автомобиль, еще столько же — автомобиль, еще — автомобиль, автомобиль, автомобиль… Однако она бывает «смазана» однообразием — с конвейера сползают автомобиль за автомобилем, ничуть не отличающиеся один от другого, ни одним из своих многочисленных признаков, ни единой деталью, ни цветом, ну абсолютно ничем. Получается это потому, что вся программа сборки определена на продолжительный срок.