Вы читаете книгу
Великий треугольник, или Странствия, приключения и беседы двух филоматиков
Александрова Эмилия Борисовна
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Великий треугольник, или Странствия, приключения и беседы двух филоматиков - Александрова Эмилия Борисовна - Страница 12
— Де, де! То есть да, да! — присоединяется Фило. — Я тоже не очень в этом разобрался.
— Что ж тут разбираться? — хмурится Мате (как и предполагал Асмодей, он, конечно, не устоял перед соблазном поболтать о математике). — Вы же слышали: Дезарг признавал геометрию в чистом виде, Декарт алгебраизировал ее.
— Но какой из двух методов лучше? — допытывается Фило.
— Гм… Ну, если говорить о методе Декарта, то это прежде всего метод совершенно универсальный. Пользуясь им, большинство геометрических задач можно решить с помощью элементарной алгебры. А лет эдак через тридцать, когда появится дифференциальное и интегральное исчисление, возможности аналитической геометрии Декарта станут и того больше…
— Э, нет! — протестует Фило. — Вы уклоняетесь от прямого ответа. Помнится, вас спрашивали, чей метод лучше? Декарта или Дезарга?
— Хуже, лучше… Все это понятия относительные. Что лучше: пароход или самолет?
— Вы меня спрашиваете? — уточняет Фило. — Лично я предпочитаю такси.
— Такси — городской транспорт, а я говорю о междугородном.
— Ну, тогда все зависит от обстоятельств. Если едешь в очередной отпуск, нет ничего приятнее речного теплохода. Если же в срочную командировку — тут уж необходим самолет.
— Видите, — говорит Мате, — все, стало быть, зависит от сферы применения. То же и с методами двух «Д». Удивительно красивый, хоть и сложноватый, способ Дезарга имеет неоспоримые преимущества при решении задач практических: в землемерии, в инженерном деле… Кстати сказать, Дезарг и сам отличный военный инженер.
— Как же, как же! — сейчас же вклинивается бес. — Участник знаменитой осады Ла Рошели[18].
— Вот я и говорю, — продолжает Мате, будто не слыша, — в инженерном деле без чертежей не обойтись. Подсуньте токарю алгебраическое уравнение вместо вычерченной во всех проекциях детали — он вас так поблагодарит, что не обрадуетесь! В этом случае метод Дезарга, усовершенствованный в восемнадцатом веке другим французским ученым, Монжем, не то что лучший, а просто-напросто единственно возможный. Если же говорить о теоретической или так называемой чистой математике — здесь уже уместнее способ Декарта.
— Ко-ко-ко! — вкрадчиво кудахчет черт. — Как говорится, Декарту и карты в руки!
Но Мате и бровью не ведет.
— Допустим, — говорит он, — нам дан воображаемый треугольник, и мы должны выяснить все, что с ним связано: площадь, размеры сторон, углов, биссектрис, высот, медиан, радиуса вписанного и описанного кругов, в свою очередь — их площади, а также длины их окружностей — словом, всю подноготную! Так вот, методом Декарта все это можно вычислить без единого чертежа, зная всего лишь координаты трех вершин, то есть шесть чисел.
Фило потрясен. Этот Декарт — настоящий фокусник! Выходит на сцену почти с пустыми руками, не имея ничего, кроме трех точек, а через несколько минут все кругом завалено биссектрисами, медианами и всякими там вписанными и описанными окружностями… Ну, а Дезарг? Как вычислял эти штуковины он?
Оказывается, никак. Он вообще ничего не вычислял — только чертил. Проектировал разные геометрические тела и фигуры на всевозможные поверхности и изучал свойства проекций (оттого-то геометрия его и называется проективной). Возьмет, например, конус, проведет через его вершину различные плоскости, спроектирует на них круговое сечение конуса и исследует, что у него получилось.
Но Фило уже вошел во вкус, и общие слова его не устраивают. Он непременно хочет знать, что именно получилось у Дезарга, и услыхав, что это окружность, эллипс, парабола и гипербола, впадает в тихое умиление. Подумать только! То самое, что они проходили на исфаханском базаре!
— По-моему, мы там проходили мимо верблюда, — острит Мате.
Но Фило не до шуток. Неужели Мате не помнит? Они брали бумажный фунтик, то есть конус, и рассекали его воображаемыми плоскостями. При этом у них, совсем как у Дезарга, тоже получались окружность, эллипс, парабола и гипербола.
— Вся штука в том, что Дезарг добывал их другим способом: с помощью проекций. Понимаете?
Вполне! Кстати, что такое проекция? Мате закатывает глаза с видом мученика. Не знать, что такое проекция! Бывает же… Что ж, придется объяснять. Но вот вопрос: где? Сказать по правде, ему еще не доводилось чертить, кувыркаясь в воздухе.
— Знаете что? Давайте посидим на той крыше! — вдохновенно предлагает Фило. — Она вроде бы не такая покатая.
— Удачнейший выбор, мсье! — живо откликается бес, который и сам не прочь отдохнуть. — Крыша руанской судебной палаты. Самое подходящее место, чтобы судить о чем бы то ни было, в том числе о достоинствах метода Дезарга. Ко-ко…
Через минуту они уже сидят на твердой черепичной почве, для удобства покрытой асмодеевым плащом.
— Может, позавтракаем? — осторожно заикается Фило.
— Вы, кажется, проекциями интересовались, — обрывает его Мате и лезет за своим блокнотом. — Начнем с проекции, которая называется центральной.
Он набрасывает контур некой произвольной фигуры, на некотором расстоянии от нее обозначает плоскость…
— Допустим, нам надо спроектировать вот эту фигуру на эту вот плоскость. Выберем точку вне заданной фигуры — назовем ее центром проекций — и проведем из нее лучи через точки контура до пересечения с плоскостью. Точки пересечения объединим одной линией — и проекция готова.
— Как просто! — удивляется Фило. — К тому же очень похоже на то, что мысленно делает художник, когда хочет изобразить предмет в перспективе.
— Всегда говорил, что искусству без науки не прожить, — походя ввертывает Мате. — Но давайте все же не отвлекаться! Следующая разновидность — проектирование параллельное. В этом случае лучи проводятся не из одного центра, а из каждой точки проектируемого контура.
Фило тычет в чертеж пухлым, по-детски оттопыренным пальцем. А почему ваши лучи косые? — Так мне хочется! Имею полное право проводить лучи в любом направлении, с тем условием, чтобы все они были параллельны друг другу. Если же я проведу их не наклонно, а перпендикулярно к плоскости проекций, — это уже будет проекция ортогональная. Самая, пожалуй, необходимая из всех, потому что именно она используется в начертательной геометрии.
Фило понимающе кивает. Начерталка! У его соседа-студента от одного этого слова нервный тик делается.
Мате признает, что предмет и в самом деле свирепый. Но, увы, без него, так же, впрочем, как и без сопромата, нет настоящего инженера-конструктора!
— Наивосхитительнейший мсье Мате, — жалобно взмаливается бес, делая еще одну отчаянную попытку вернуть расположение разобиженного математика, — не могли бы вы познакомить меня хоть с одной из работ Дезарга? Я так давно об этом мечтаю!
— Хм… — Мате с досадой отмечает, что злость его на Асмодея испаряется с катастрофической быстротой. — Как-нибудь в другой раз. Впрочем, если вам так уж хочется… — Он решительно хлопает себя по колену. — Ну да ладно, хватит дуться! Вот вам одна, зато чрезвычайно важная, теорема проективной геометрии. Она так и называется: теорема Дезарга.
Он вычерчивает небольшой треугольник, поясняя, что размеры его сторон в данном случае никакого значения не имеют, ставит где-то слева от него точку и проводит из нее три луча так, что каждый из них проходит через одну из вершин треугольника.
— Центральное проектирование, — глубокомысленно определяет Фило.
— Не совсем так, — морщится Мате. — Вернее даже, совсем не так. Ну да сейчас не в том дело… Строим второй треугольник, тоже с тем расчетом, чтобы каждая из трех его вершин оказалась на одном из трех лучей… Незачем говорить, что таких треугольников можно нагородить сколько угодно. А теперь продолжим в одном и в другом треугольнике те стороны, концы которых лежат на общих лучах, до тех пор, пока они не пересекутся. Точки пересечения обозначим пожирнее и увидим, что все они, эти точки, лежат на одной прямой.
18
Ла Рошель — город во Франции. С XVI века оплот гугенотов. В 1628 голу осажден и взят королевскими войсками под началом кардинала Ришелье.
- Предыдущая
- 12/47
- Следующая