Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Основы нейропсихологии - Лурия Александр Романович - Страница 9


9
Изменить размер шрифта:

института мозга)

Другой не менее важной функциональной характеристикой строения коры мозга животного является отношение между массой клеточных тел и массой клеточного вещества.

Исследования последнего времени показали, что в осуществлении сложных нервных процессов решающую роль играет не только тело нервной клетки, но и ее многочисленные отростки и, наконец, окружающие нейроны глиальные клетки (Хиден, 1962, 1964; Ройтбак, 1965; и др.).

Увеличение «глиального индекса» на каждой новой ступени эволюции указывает на повышение управляемости функций отдельных мозговых зон, однако лишь будущие сравнительно-анатомические исследования могут выявить его недлинный функциональный смысл.

29

Характерным поэтому является тот факт, что с эволюцией животного величина отношения глиальной ткани коры к массе ее нервных клеток все более возрастает и у человека оказывается во много раз большей, чем у млекопитающих, стоящих на более низких ступенях эволюции (табл. 5).

Таблица 5

А. Отношение массы серого вещества коры (нейронов) к массе глнальных клеток («глиальный индекс») на разных ступенях эволюции

(по Фрид, 1954)

Вид

Слои коры

I

II

IV

Мышь

0,29

0,49

0,62

Человек

1,24-1,70

1,65

1,98

Б. Отношение массы серого вещества коры (нейронов) к массе глнальных

клеток («глиальный индекс») на последовательных ступенях эволюции

в пределах двигательной зоны коры

(по Банану, 1951)

Вид

Величина клеток Беца, мк

Число клеток

Беца в 1 мм 3

серого вещества

Отношение массы

серого вещества к

массе клеток

Беца, усл. ед.

Низшие обезьяны

3,7

31,0

52

Высшие обезьяны

113

Человек

6,1

12,0

233

Аналогичная тенденция легко прослеживается в процессе созревания коры мозга человека. У плода 6 месяцев верхние слои коры едва намечены, у младенца — развиты относительно слабо, у нормального взрослого — занимают значительное место (рис. 13). В случаях врожденного слабоумия эти слои клеток недоразвиты, а у больных с органической деменцией и атрофией коры — резко сужены.

30

Рис. 13. Сравнительная толщина

верхних слоев коры в онтогенезе

(по Е. П. Кононовой и др.)

31

Все это указывает на то, что верхние, «ассоциативные», слои мозговой коры играют важную роль в осуществлении наиболее сложных форм психической деятельности, становление которых происходит на поздних ступенях филогенеза и на поздних этапах развития человека.

Не менее важным анатомическим фактом, позволяющим нам понять основные принципы строения мозговой коры, является неравно-

мерность распределения отдельных слоев коры в топографически различных участках коры головного мозга.

Факты показывают, что над каждой первичной областью мозговой коры, в которой преобладают низшие (афферентные или эфферентные) слои коры, надстраиваются вторичные области, в которых преобладают верхние (проекционно-ассоциационные) слои, играющие, как мы увидим далее, существенную роль в функциональной организации работы отдельных анализаторов.

Иерархическое строение мозговой коры легко можно видеть, рассмотрев топографическую карту мозга, изображенную на рисунке 14. Мы видим, что над первичными (проекционными) отделами общечувствительной коры (задняя центральная извилина) у человека надстраивается вторичная чувствительная кора, в которой преобладают верхние (проекционно-ассоциационные) слои; над первичной зрительной корой, расположенной в полюсе затылочной области, надстраивается вторичная зрительная кора, где также преобладают верхние (проекционно-ассоциационные) слои; над первичной слуховой корой, расположенной в верхних отделах височной области, надстраиваются ее вторичные отделы с тем же строением; наконец, над первичной двигательной корой, занимающей переднюю центральную извилину, — ее вторичные отделы, расположенные в премоторной области.

Рис. 14. Топографическая карта мозговой коры:

а —наружная поверхность; б— внутренняя поверхность. Ядерные зоны мозговой коры обозначены кружками (зрительная зона), квадратами (слуховая

зона), ромбами (общечувствительная зона), треугольниками (двигательная

зона); центральные поля выделены более крупными знаками. Зоны перекрытия

анализаторов в задних отделах полушария (теменно-височно-затылочные и

нижнетеменные отделы) обозначены смешанными знаками; в передних

отделах полушария (лобная область) — видоизмененными треугольниками;

лимбическая и инсулярная области, а также филогенетически старые зоны

коры — прерывистой штриховкой

(по Г.И.Полякову)

2 Лурия

33

Как видно из той же карты, в коре головного мозга человека можно выделить участки, которые лежат на границах между корковыми представительствами отдельных чувствительных зон мозговой коры и которые получили название третичных зон коры (или зон перекрытия коркового представительства отдельных анализаторов). Эти области коры целиком состоят из верхних (ассоциационных) слоев клеток и не имеют прямой связи с периферией. Есть все основания предполагать, что третичные зоны коры обеспечивают совместную работу корковых звеньев отдельных анализаторов, наиболее сложные интегральные функции коры головного мозга.

Как показали детальные анатомические исследования, в коре головного мозга можно выделить две группы третичных областей. Первая из них — задняя — расположена на стыке зрительной (затылочной), общечувствительной (теменной) и слуховой (височной) областей; ее с полным основанием можно обозначить как зону перекрытия корковых отделов экстероцептивных анализаторов. Вторая — передняя — расположена спереди от двигательной зоны коры и надстраивается над двигательными отделами коры головного мозга. Она связана со всеми остальными отделами коры и, как мы увидим далее, играет существенную роль в построении наиболее сложных программ поведения человека.

32

Внимательное изучение хода волокон от периферических органов чувств к коре головного мозга в полной мере подтверждает принцип иерархического строения основных отделов мозговой коры. Рисунки 14 и 15 убедительно показывают, что функциональные системы головного мозга имеют одинаковое (иерархическое) строение и что анатомические данные позволяют выделить в коре головного мозга первичные, вторичные и третичные зоны.

Рис. 15. Системы связей первичных, вторичных и третичных зон мозговой коры:

I — первичные (центральные) поля; II — вторичные (периферические) поля; III — третичные поля (зоны перекрытия анализаторов). Жирными линиями выделены: I — система проекционных (корково-подкорковых) связей коры; 11 — система проекционно-ассоциационных связей коры; III — система ассоциативных связей коры. 1 —рецептор; 2— эффектор; 3— нейрон чувствительного узла; 4— двигательный нейрон; 5, 6 —переключательные нейроны спинного мозга и ствола; 7—10— переключательные нейроны подкорковых образований; 11, 14— афферентные волокна из подкорки; 13— пирамида V слоя; 16 —пирамида подслоя III 3; 18— пирамиды подслоев III 2и Ш 1; 12, 15, 17— звездчатые клетки коры (по Г.И.Полякову)