Вы читаете книгу
Моделирование рассуждений. Опыт анализа мыслительных актов
Поспелов Дмитрий Александрович
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Моделирование рассуждений. Опыт анализа мыслительных актов - Поспелов Дмитрий Александрович - Страница 17
Пусть, например, надо узнать, выводима ли в исчислении высказываний формула ((
??)?). В эту формулу входит одно высказывание ?. Поэтому нужно проверить лишь две комбинации истинности: когда ? истинно и когда оно ложно. В первом случае по свойству импликации первая скобка является истинной, ибо ? ложно. Но тогда истинна и вся формула, ибо импликация истинна, когда истинны ее левая и правая части. Если же ? ложно, то первая скобка является ложной, так как левая часть импликации (??) истинна, а правая ложна. Но тогда вся формула является истинной. Тем самым доказано, что интересующая нас формула является тождественно истинной и, следовательно, выводимой в исчислении высказываний.О чем все это говорит? Прежде всего о том, что процедура выводимости в исчислении высказываний конструктивно разрешима. Проверка общезначимости (тождественной истинности) формулы сводится к построению нужной конечной таблицы и перебору всех вариантов, содержащихся в ее левой части, с целью определения истинностного значения проверяемой формулы. Получение первого значения «ложь» свидетельствует о невыводимости. Если же при всех комбинациях, перечисленных в левой части таблицы, формула принимает значение «истина», то она выводима с помощью описанных выше двух правил вывода из той или иной полной системы абсолютных аксиом.
Проиллюстрируем эту процедуру еще на одном примере. Проверим, является ли выводимой формула ((?
?)((??)&?)). В этой формуле (будем обозначать ее ?) имеется три высказывания, что приводит к необходимости рассмотрения истинного значения ? на 23=8 комбинациях. Эти комбинации и соответствующие шаги по определению истинностного значения ? на них даны в табл. 3, в которой И и Л означают соответственно значения «истина» и «ложь».Таблица 3
Появление в пятой строке в столбце ? значения Л свидетельствует о невыводимости исследуемой формулы. На этом шаге процесс вывода можно прекратить. Остальные строки в таблице приведены лишь для полноты картины.
«Логик-теоретик»
Так была названа программа для ЭВМ, созданная в середине шестидесятых годов американским кибернетиком А. Ньюэллом в содружестве с психологом Г. Саймоном. Она была предназначена для доказательства теорем в исчислении высказываний, т.е. для поиска обоснования тождественной истинности некоторых утверждений. Для того чтобы перейти к описанию программы «Логик-теоретик», введем предварительно понятие о равенстве двух выражений исчисления высказываний. Будем говорить, что выражения ?1 и ?2 равны между собой, и записывать этот факт обычным образом ?1=?2, если на всех возможных наборах интерпретации истинности входящих в них элементарных высказываний истинность ?1 и ?2 одинакова.
Появление знака равенства, которого не было в исчислении высказываний, не должно нас смущать. Его легко можно исключить из рассмотрения, введя формулу ((?1&?2)
(?1&?2)). Читатели могут проверить, что эта формула будет истинной только в том случае, когда оценки истинности ?1 и ?2 одинаковы. Тогда утверждение, что ?1=?2, становится эквивалентным утверждению, что формула ((?1&?2)(?1&?2)) является истинной.«Логик-теоретик» должен был доказывать справедливость утверждений вида ?1=?2 для различных ?1 и ?2. Однако авторы «Логика-теоретика» не пошли по прямому пути. Не стали строить таблицы для ?1 и ?2 и проверять совпадение истинности ?1 и ?2 на всех возможных интерпретациях истинности их аргументов. Ведь с ростом числа аргументов n число строк в этих таблицах растет как 2n. А. Ньюэлл и Г. Саймон пошли по пути приближения процедуры доказательства к тому, как это делают люди.
В основу процесса доказательства они положили идею ликвидации различий в формульной записи ?1 и ?2. Авторы программы составили перечень из шести различий.
1. В ?1 и ?2 различное число членов в формулах. Например, ?1=?
?, а ?2=??[6].2. В ?1 и ?2 имеется различие в основной связке (т.е. в связке, которая выполняется последней). Например, ?1=(??)
(), а ?2=(?)?.3. Перед всем выражением для ?1(?2) стоит знак отрицания, а перед ?2(?1) его нет. Например, ?1=
(??), а ?2=??.4. Аналогичное различие, но оно касается не всего выражения для ?i (i=1,2), а некоторого его подвыражения.
5. Скобки в ?1 расставлены не так, как в ?2. Например, ?1=?
(??), а ?2=(??)?.6. Записи для ?1 и ?2 отличаются порядком следования подвыражений. Например, ?1=(??)
?, а ?2=?(??).Для того чтобы иметь возможность ликвидировать подобные различия, используются 12 преобразований формул исчисления высказываний. Первые семь преобразований носят тождественный характер, т.е. не меняют истинного значения преобразуемых формул. Последние пять верны только при условии, что левая часть их является тождественно истинной (T–выражением).
В преобразованиях использованы большие латинские буквы, которые могут соответствовать любым подвыражениям формул ?1 и ?2. Стрелки
и показывают направление преобразований. (Знак есть по сути знак .)6
Для более компактной записи формул будем писать
вместо ? и опускать знак конъюнкции там, где это не мешает однозначному пониманию формулы.- Предыдущая
- 17/49
- Следующая