Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Рассказы о биоэнергетике - Скулачев Владимир Петрович - Страница 3
Биополимеры пищи могут быть весьма разнообразны: это сотни различных белков, жиров и полисахаридов. В организме происходит распад этого «топлива». Прежде всего полимерные молекулы распадаются на составляющие их мономеры: белки расщепляются на аминокислоты, жиры — на жирные кислоты и глицерин, полисахариды — на моносахариды. Общее количество различных типов мономеров измеряется уже не сотнями, а десятками.
В дальнейшем мономеры превращаются в небольшие по величине моно-, ди- и трикарбоновые кислоты с числом углеродных атомов от 2 до 6. Этих кислот всего десять. Их превращение замкнуто в цикл, названный циклом Кребса в честь его первооткрывателя,
В цикле Кребса происходит окисление карбоновых кислот кислородом до углекислого газа и воды. Именно образование воды в результате реакции молекулярного кислорода с водородом, отщепленным от карбоновых кислот, сопровождается наибольшим выделением энергии, в то время как предшествующие процессы служат главным образом лишь подготовкой «топлива». Окисление водорода кислородом, то есть реакция гремучего газа (О2+2Н2 = 2Н20), в клетке разбито на несколько стадий, так что освобождающаяся при этом энергия выделяется не сразу, а порциями.
Так же порциями происходит освобождение энергии, поступающей в виде кванта света, в клетках организмов-фотосинтетиков.
Итак, в одной и той же клетке существует, во-первых, несколько реакций освобождения энергии и, во-вторых, множество процессов, идущих с поглощением энергии. Посредником этих двух систем, совокупность которых называется энергетическим обменом, служит особое вещество — аденозинтрифосфорная кислота (АТФ).
АТФ клетки - разменная валюта
Для энергетического обмена клетки очень важны так называемые сопряженные химические реакции. В каждой такой реакции связываются воедино два различных процесса: один, сопровождающийся выделением энергии, и другой, требующий ее затрат. В результате оказывается, что первый (энергодающий) процесс становится движущей силой для второго процесса, потребляющего энергию.
В начале 40-х годов известный биохимик Ф. Липман высказал гипотезу, что различные реакции освобождения энергии в клетке всегда сопряжены с одной и той же реакцией, а именно синтезом АТФ из ее предшественников — аденозиндифосфорной кислоты (АДФ) и неорганической ортофосфорной кислоты (Н3РО4). С другой стороны, реакции расщепления (гидролиза) АТФ до АДФ и Н3РО4 сопряжены, по Липману, с совершением различных типов полезной работы. Другими словами, образование АТФ служит универсальным накопителем энергии, а расщепление АТФ — универсальным поставщиком энергий.
Еще до публикации гипотезы Липмана советские ученые, В. Энгельгардт и В. Белицер, установили, что внутриклеточное дыхание, то есть окисление водорода карбоновых кислот кислородом, сопряжено с синтезом АТФ. Образование АТФ было показано также при гликолизе (расщепление углеводов до молочной кислоты в отсутствие кислорода), В 50-е годы американский биохимик Д. Арнон продемонстрировал синтез АТФ у растений за счет энергии света.
В то же время были описаны многочисленные случаи энергообеспечения работы клетки за счет гидролиза АТФ. Выяснилось, что синтез белков, жиров, углеводов, нуклеиновых кислот из соответствующих мономеров «оплачивается» энергией АТФ. В. Энгельгардт и М. Любимова обнаружили расщепление АТФ сократительным мышечным белком. Это открытие позволило понять, каким образом обеспечивается энергией работа мышцы. К настоящему времени несомненна причастность АТФ также и ко многим другим процессам, потребляющим энергию.
Итак, клетка использует энергетические ресурсы, чтобы получить АТФ, а затем тратит этот АТФ, чтобы оплатить различные виды работы.
Где и как образуется АТФ?
Первой системой, для которой выяснили механизм образования АТФ, оказался гликолиз — вспомогательный тип энергообеспечения, включающийся в условиях нехватки кислорода. При гликолизе молекула глюкозы расщепляется пополам и полученные обломки окисляются до молочной кислоты.
Такое окисление сопряжено с присоединением фосфорной кислоты к каждому из фрагментов молекулы глюкозы, то есть с их фосфорилированием. Последующий перенос фосфатных остатков с фрагментов глюкзы на АДФ дает АТФ.
Механизм образования АТФ при внутриклеточном дыхании и фотосинтезе долгое время оставался совершенно неясным. Было известно только, что ферменты, катализирующие эти процессы, встроены в биологические мембраны — тончайшие пленки (толщиной около одной миллионной доли сантиметра), состоящие из белков и фосфорилированных жироподобных веществ — фосфолипидов.
Мембраны — важнейший структурный компонент любой живой клетки. Внешняя мембрана клетки отделяет протоплазму от окружающей клетку среды. Клеточное ядро окружено двумя мембранами, которые образуют ядерную оболочку — преграду между внутренним содержимым ядра (нуклеоплазмой) и остальной частью клетки (цитоплазмой). Кроме ядра, в клетках животных и растений находят еще несколько структур, окруженных мембранами. Это эндоплазматическая сеть — система мельчайших трубочек и плоских цистерн, стенки которых образованы мембранами. Это, наконец, митохондрии — шарообразные или вытянутые пузырьки размером мельче ядра, но крупнее компонентов эндоплазматической сети. Диаметр митохондрии обычно около микрона, хотя иногда митохондрии образуют ветвящиеся и сетчатые структуры протяженностью в десятки микрон.
В клетках зеленых растений, помимо ядра, эндоплазматической сети и митохондрий, находят еще и хлоропласты — мембранные пузырьки более крупные, чем митохондрии.
Каждая из этих структур выполняет свою, специфическую биологическую функцию. Так, ядро — вместилище ДНК. Здесь происходят процессы, лежащие в основе генетической функции клетки, и начинается сложная цепь процессов, приводящая в конечном итоге к синтезу белка. Этот синтез завершается в мельчайших гранулах — рибосомах, большая часть которых связана с эндоплазматической сетью. В митохондриях происходят окислительные реакции, совокупность которых называется внутриклеточным дыханием. Хлоропласты отвечают за фотосинтез.
Клетки бактерий устроены проще. Обычно они имеют только две мембраны — внешнюю и внутреннюю. Бактерия — это как бы мешок в мешке, а точнее, очень мелкий пузырек с двойной стенкой. Здесь нет ни ядра, ни митохондрий, ни хлоропластов.
Существует гипотеза, что митохондрии и хлоропласты произошли из бактерий, захваченных клеткой более крупного и высокоорганизованного существа. Действительно, биохимия митохондрий и хлоропластов во многом напоминает бактериальную. Морфологически митохондрии и хлоропласты тоже в известном смысле подобны бактериям: они окружены двумя мембранами. Во всех трех случаях: в бактериях, митохондриях и хлоропластах — синтез АТФ происходит во внутренней мембране.
Долгое время считалось, что образование АТФ при дыхании и фотосинтезе протекает аналогично уже известному превращению энергии при гликолизе (фосфорилирование расщепляемого вещества, его окисление и перенос остатка фосфорной кислоты на АДФ). Однако все попытки экспериментально доказать эту схему оканчивались неудачей.
Глава 3. От микробиологии к биоэнергетике
Муравьиный язык
Для меня эта история началась четверть века назад, когда на третьем курсе биофака МГУ я решил заняться тем, что сейчас мы называем биоэнергетикой, рискованной в общем-то областью биологии. Как правило, здесь ничего не увидишь, не уловишь на слух и не пощупаешь руками. Приходится доверять приборам, способным улавливать слабые отклики событий, сопутствующих превращениям энергии в мельчайших крупинках живой материи.
Здесь нет ничего сложнее, чем угадать единственно правильный путь среди тысячи, казалось бы, равных возможностей. И нет ничего проще, чем придумать новую гипотезу: достаточно располагать неким минимумом сведений и способностью логически мыслить.
- Предыдущая
- 3/44
- Следующая