Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Материалы для ювелирных изделий - Куманин Владимир Игоревич - Страница 8


8
Изменить размер шрифта:

Сплавы, содержащие от 8,8 до 28 % меди, называются доэвтектическими. Их кристаллизация начинается при температурах ниже линии ликвидуса с образования кристаллов α-твердого раствора. Так как эти кристаллы содержат больше серебра, чем жидкость, в жидком расплаве содержание серебра уменьшается, а следовательно, увеличивается содержание меди. Состав жидкой фазы изменяется по линии ликвидуса, и при температуре 779 °C жидкая фаза имеет эвтектический состав, т. е. содержит 28,0 % меди. Таким образом, при температуре 779 °C все доэвтектические сплавы состоят из двух фаз: жидкого расплава, содержащего 28 % меди и 72 % серебра, и кристаллов α-твердого раствора меди в серебре. При этой температуре происходит кристаллизация жидкости с образованием эвтектики. Процесс эвтектической кристаллизации рассмотрен выше. В твердом состоянии все эти сплавы имеют следующую структуру: первичные кристаллы α-твердого раствора и окружающая их смесь кристаллов α– и β-твердых растворов – эвтектика.

Сплавы, содержащие более 28 % меди (от 28 до 92 %), называются заэвтектическими. Их кристаллизация происходит аналогично кристаллизации доэвтектических сплавов. Различие заключается в том, что в этих сплавах ниже температуры ликвидуса из жидкости выделяются кристаллы β-твердого раствора. Структура этих сплавов в твердом состоянии такова: первичные кристаллы β-фазы, окруженные эвтектикой.

При нагревании всех сплавов, содержащих от 8 до 92 % меди, плавление начинается при температуре 779 °C. Первой плавится эвтектика. При дальнейшем повышении температуры происходит плавление кристаллов α-фазы в доэвтектических сплавах или β-фазы в заэвтектических сплавах. Окончательный переход сплава в жидкое состояние соответствует нагреву до температуры линии ликвидуса. Как показывает опыт, при плавлении перегрев сплава выше линии ликвидуса не наблюдается.

4. Механические свойства сплавов

4.1. Основные механические свойства материалов

Изготовление ювелирных изделий – процесс многоступенчатый и начинается всегда с литья, т. е. получения сплава в жидком состоянии, заливки его в форму, кристаллизации. В отдельных случаях сплав используют в виде полуфабриката, например в виде проволоки. Тогда литье было проведено на заводе-изготовителе.

В процессе изготовления ювелирных изделий, например сканных, возникает задача пластической деформации сплава.

Пластическая деформация – это изменение размера и формы под влиянием внешних напряжений, которое сохраняется после снятия внешней нагрузки.

Под влиянием внешних усилий любое изделие может деформироваться. Если величина приложенных напряжений невелика, то после снятия нагрузки размер и форма изделия возвращаются к исходному состоянию. Такая деформация считается упругой. С увеличением нагрузки происходит пластическая деформация. Последняя стадия деформации – разрушение изделия.

Величина напряжений, которые может выдержать данное изделие без деформации и разрушения, зависит от механических свойств материала, из которого оно изготовлено. Стандартный способ определения механических характеристик (ГОСТ 1497-73) – испытание на растяжение цилиндрических образцов. Кривая растяжения, т. е. зависимость удлинения образца от приложенной силы, показана на рис. 4.1. До величины Рупр образец деформируется упруго и после снятия нагрузки возвращается к исходной длине. Величина Рпц называется пределом пропорциональности, т. е. характеризует максимальную нагрузку, до которой Δ1 пропорционально Р. Различие Рпц и Рупр невелико, и им обычно пренебрегают.

Рис. 4.1. Диаграмма растяжения металла.

Р – растягивающая сила (нагрузка),

ΔI – удлинение образца (деформация).

Нагрузка больше Рупр вызывает необратимое изменение длины – происходит пластическая деформация. Величина σ0,2 называется пределом текучести. Предел текучести – это условная характеристика. Это такое напряжение, которое вызывает в образце пластическую деформацию в 0,2 %. При достижении предела текучести пластическая деформация развивается без увеличения нагрузки. Однако для создания последующей пластической деформации необходим рост внешней нагрузки. После достижения Рмax нагрузка на образец уменьшается, так как уменьшается площадь поперечного сечения образца. Образуется «шейка». В то же время напряжение (отношение силы, приложенной к образцу, к площади поперечного сечения) продолжает расти. Таким образом, можно отметить несколько стадий деформации материала под действием внешнего напряжения: упругая деформация (участок 0–2), текучесть (участок 2–3), упрочнение (участок 3–4) и разрушение (точка 5, соответствующая нагрузке Рk).

Основные характеристики прочности материала – предел текучести σ0,2, предел упругости σупр, предел прочности σв.

Предел упругости – максимальное напряжение, при снятии которого величина остаточной деформации не превышает тысячных долей процента. Предел прочности – временное сопротивление разрыву – максимальное напряжение, выдерживаемое образцом.

При выборе материала для изготовления ювелирных изделий эти характеристики играют немаловажную роль.

Высокий предел упругости и текучести обеспечивает неизменность формы и размера изделия при воздействии на него различных нагрузок. Высокий предел прочности препятствует разрушению изделия.

Одним из важных механических свойств материала является его твердость. Твердость – это способность материала сопротивляться пластической деформации при внедрении в него более твердого тела. Чем выше твердость материала, тем он лучше полируется до зеркально гладкой поверхности, меньше царапается в процессе эксплуатации, сохраняя внешний вид неизменным. Высокая твердость обеспечивает обычно и высокую износостойкость.

4.2. Механизм пластической деформации

Пластическая деформация осуществляется посредством сдвига внутри кристалла по определенным кристаллографическим плоскостям, которые называются плоскостями скольжения. Сдвиг в кристалле начинается при достижении внешним напряжением величины предела текучести. Так как зерна в образце ориентированы различно относительно внешнего напряжения, то пластическая деформация развивается в металле неоднородно. В первую очередь деформируются те зерна, которые ориентированы таким образом, что напряжение в их плоскости скольжения достигает величины напряжения сдвига. Форма зерна в результате многочисленных сдвигов изменяется. При этом, так как зерна взаимно связаны, происходит поворот соседних зерен, их ориентация относительно внешнего напряжения изменяется, и пластическая деформация распространяется на другие зерна. Постепенно все зерна металла деформируются, их форма изменяется, зерна вытягиваются в направлении приложенного напряжения. В кристаллической структуре металла возникают дефекты.

В результате пластической деформации изменяются механические свойства металла: прочность увеличивается, пластичность уменьшается. Это явление называется «наклеп».

Упрочнение металла при пластической деформации и уменьшение его пластичности ограничивает возможность дальнейшей деформации. Так, при волочении проволоки с уменьшением сечения при следующих проходах через фильеру возникают обрывы.

На рис. 4.2 показана зависимость прочности и пластичности латуни Л68 от степени пластической деформации. В качестве характеристики пластичности выбрано относительное удлинение, δ%, т. е. отношение прироста длины разрушенного образца к его первоначальной длине. Степень пластической деформации оценивается по отношению:

с. п.д. = (d20 – d2д / d20,

где с.п.д. – степень пластической деформации,