Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
100 великих чудес техники - Мусский Сергей Анатольевич - Страница 13
Лазерная микрообработка одна занимает целый диапазон, хотя, надо сразу сказать, самостоятельного значения не имеет: принципиально новых операций тут немного. В основном речь идет о пайке микросхем и создании отверстий различной формы (скажем, в фильерах для получения сверхтонких волокон из синтетических смол). Зато настоящего революционного технологического перевооружения требует следующий шаг – микромеханика. Размеры микромеханических устройств таковы, что для их создания недостаточно малых и сверхмалых устройств. В качестве критерия возьмем минимальные размеры объектов, с которыми способна манипулировать данная технология. Для упрощения картины округлим величины с точностью до порядка. И нанеся их на масштабную шкалу, получим своего рода спектр, где каждая технология занимает определенный «диапазон» (примерные минимальные размеры даны в миллиметрах): классическая точная механика – 1, лазерная микрообработка – 0,01, микромеханика и микроэлектроника – 0,0001, нанотехнология – 0,000001».
Рубеж поистине роковой для любых механизмов – расстояния менее 100 нм. Тогда заметно «слабеют» законы классической механики, и все больше дают себя знать межатомные силы, тепловые колебания, квантовые эффекты. Резко затрудняется локализация элементов устройств, теряет смысл понятие траекторий их движения. Короче, в подобных условиях вообще нельзя говорить о «механизмах», состоящих из «деталей».
Микромеханике повезло: ей с самого начала удалось устроиться «на плечах гиганта» – микроэлектроники, получив от нее практически готовую технологию массового производства. Ведь отработанная и постоянно развивающаяся технология сложнейших электронных микросхем лежит в том же диапазоне масштабов. И точно так же, как на одной пластинке кремния получают многие сотни готовых интегральных схем, оказалось возможным делать разом несколько сот механических деталей. То есть наладить нормальное массовое производство.
Кремний, используемый в микроэлектронике, стал основным материалом и для микромеханизмов. Тем более что здесь открылась замечательная возможность создавать и те и другие структуры в комплексе, в едином технологическом процессе. Производство таких гибридов оказалось настолько дешевым, что некоторые образцы быстро нашли применение в производстве самой массовой коммерческой продукции, например, кремниевый акселерометр, которым теперь снабжена одна из известных систем безопасности в автомобилях – надувной мешок.
Инерционный датчик этого прибора спроектирован Ричардом Мюллером из Калифорнийского университета. В общих чертах конструкция предельно проста: кремниевый стерженек диаметром в несколько микрон подвешен над отверстием, проделанным в кремниевой же подложке. Когда возникает ускорение, стерженек с подведенным к нему электрическим потенциалом начинает вибрировать и индуцирует сигнал, поступающий на обработку в микропроцессор, расположенный в десятке микрон по соседству. Достаточно резкое падение скорости (в момент удара при аварии) мгновенно фиксируется акселерометром, и он выдает команду на наполнение воздушной подушки в центре рулевого колеса, предохраняющей водителя от самой типичной травмы – удара о руль или ветровое стекло.
Японская корпорация «Тошиба» создала электромагнитный двигатель диаметром 0,8 миллиметра и весом 4 миллиграмма. Мощность его, разумеется, невелика, но достаточна для миниатюрных роботов, разработкой которых сейчас упорно занимаются ведущие компании страны под общим руководством министерства экономики и промышленности. Помимо «Тошибы» главную скрипку в этой программе играют корпорации «Мицубиси электрик» и «Хитачи». Длина разрабатываемых ими роботов – от сантиметра до нескольких миллиметров. Человек будет заглатывать капсулу с таким устройством, и после растворения ее оболочки аппарат, повинуясь радиосигналам и вложенной в него программе, начнет самостоятельное движение по кровеносным сосудам, желудочно-кишечному тракту и другим путям.
Миниатюрные роботы предназначены для диагностики, проведения микроопераций, для доставки лекарств точно по назначению и в нужное время. Их предполагают использовать также для ремонта и смены батарей у искусственных органов.
Немецкая фирма «Микротек» уже создала прототип медицинского инструмента нового типа – миниатюрную «подводную лодку» для плавания по кровеносным сосудам. Под управлением врача она способна выполнять некоторые операции. Длина этого автономного зонда – 4 миллиметра, а диаметр – 0,65 миллиметра. Двигателя у него нет, винт приводится во вращение с помощью внешнего переменного магнитного поля, которое позволяет развивать скорость до одного метр в час. В дальнейшем микрозонд оснастят фрезой для снятия холестериновых бляшек со стенок сосудов. Он сможет переносить капсулы с лекарством в нужное место. Предлагается и еще один вариант – размещать на таких микроаппаратах генераторы ультразвука. Просвечивая органы пациента изнутри, врачи получат информацию, остающуюся недоступной при обычной диагностике.
Нашли применение и еще несколько скромных, но полезных микроприборов – например, встроенный непосредственно в подшипник измеритель скорости вращения или внутренние датчики артериального давления, сердечного ритма, содержания сахара в крови и других параметров организма, передающие информацию наружу радиосигналом.
Фуллерены
Самое твердое вещество в природе – алмаз. Это углеродное соединение имеет кристаллическую решетку в форме тетраэдра – пирамиды с четырьмя равновеликими треугольными гранями. Его вершины образованы четырьмя атомами углерода. Треугольник – очень жесткая фигура его можно сломать, но деформировать или смять нельзя. Именно поэтому прочность алмаза столь высока. В природе известны кристаллы с решеткой, состоящей не из атомов, а из молекул. Если молекулы достаточно велики и связи между ними сильны, то кристаллическая решетка оказывается чрезвычайно прочной. Этим условиям в полной мере отвечают фуллерены: имея диаметр больше 0,5 нм, они соединяются в кристалл с ячейками размером менее 1,5 нм.
Как это часто бывает, открытие фуллеренов не стало результатом целенаправленного поиска. Основное направление работ в лаборатории Р. Смолли в Университете Райса (Техас), где в 1980-е годы было сделано открытие, связанное с исследованиями структуры металлических кластеров. Методика подобных исследований основана на измерении масс-спектров частиц, которые образуются в результате интенсивного воздействия лазерного излучения на поверхность исследуемого материала.
«В августе 1985 года в лабораторию Смолли приехал известный астрофизик Г. Крото, – пишет Александр Валентинович Елецкий в «Соросовском образовательном журнале», – который работал над проблемой отождествления спектров инфракрасного излучения, испускаемого некоторыми межзвездными скоплениями. Одно из возможных решений этой проблемы, достаточно давно стоявшей в астрофизике, могло быть связано с кластерами углерода, который, как известно, составляет основу межзвездных скоплений. Целью визита Крото в Техас была попытка, воспользовавшись аппаратурой лаборатории Смолли, по масс-спектру кластеров углерода получить заключение об их возможной структуре. Результаты экспериментов привели в шоковое состояние его участников. В то время как для большинства исследованных ранее кластеров типичные значения магических чисел составляют в зависимости от взаимного расположения атомов значения 13, 19, 55 и т п., в масс-спектре кластеров углерода наблюдались явно выраженные пики с числом атомов 60 и 70. Единственным непротиворечивым объяснением такой особенности кластеров углерода явилась гипотеза, согласно которой атомы углерода образуют стабильные замкнутые сферические и сфероидальные структуры, впоследствии названные фуллеренами».
Эта гипотеза, подтвержденная в дальнейшем более детальными исследованиями, по существу и легла в основу открытия фуллеренов. Публикация о первых наблюдениях фуллеренов была направлена в журнал «Nature» уже через 20 дней после приезда Крото в Техас. В этой статье помимо предположения о сфероидальной форме фуллеренов содержались идеи о возможности существования эндоэдральных молекул фуллеренов, то есть молекул, внутри которых заключены один или несколько атомов другого элемента. Дальнейшие исследования подтвердили и это предположение.
- Предыдущая
- 13/136
- Следующая