Вы читаете книгу
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Беллос Алекс
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Беллос Алекс - Страница 9
Глава 1
Культурный счет
В Средние века в Англии, в Линкольншире, «pimp» плюс «dik» равнялось «bumfit». И в том не было ничего необычного. Эти слова просто обозначали числа пять, десять и пятнадцать на жаргоне, которым при счете овец пользовались пастухи. Полный набор этих числительных выглядел так:
1. Yan 11. Yan-a-dik 2. Tan 12. Tan-a-dik 3. Tethera 13. Tethera-dik 4. Pethera 14. Pethera-dik 5. Pimp 15. Bumfit 6. Sethera 16. Yan-a-bumfit 7. Lethera 17. Tan-a-bumfit 8. Hovera 18. Tethera-bumfit 9. Covera 19. Pethera-bumfit 10. Dik 20. PiggotВ наши дни мы считаем по-другому, — и дело не только в том, что тут все слова незнакомые. Линкольнширские пастухи организовывали числа в группы по двадцать, начиная счет со слова уап и заканчивая словом piggot. Если у пастуха было более двадцати овец — при условии, что он не заснет, занимаясь их пересчетом, — ему приходилось делать отметку о том, что он закончил один цикл, например положив камешек в карман или проведя линию на земле. После этого он опять начинал считать сначала: «Yan, tan, tethera». Если у него восемьдесят овец, то в кармане у него в конце концов окажется четыре камушка или же на земле будут нарисованы четыре линии.
В современном мире мы, разумеется, группируем числа десятками, так что в нашей числовой системе десять цифр. Число, выражающее размер группы, используемой при счете, — которое к тому же часто совпадает с числом используемых символов, — называется основанием системы счисления, так что наша десятичная система имеет основание десять, а принятая у английских пастухов — двадцать.
Если при счете не пользоваться каким-либо разумным основанием, с числами вообще невозможно иметь дело. Представим себе, что у пастухов система счета с основанием единица. Это означает, что у них имеется только одно слово для чисел, уап, обозначающее единицу. «Два» тогда будет уап уап. «Три» — уап уап уап. Восемьдесят овец потребуют произнесения слова уап восемьдесят раз. Такая система достаточно бесполезна для счета чего бы то ни было, превосходящего числом тройку. С другой стороны, вообразим, что каждое число выражается отдельным новым словом, так что способность досчитать до восьмидесяти потребует запоминания восьмидесяти разных слов. Попробуйте-ка теперь досчитать до тысячи!
Многие сообщества людей, живущих в изоляции, до сих пор используют нестандартные основания. Представители племени арара, живущие в Амазонии, например, считают парами, выражая числа от одного до восьми таким образом: анане, адак, адак анане, адак адак, адак адак анане, адак адак адак анане, адак адак адак адак. Счет двойками — не слишком большое усовершенствование по сравнению со счетом единицами. Чтобы добраться до сотни, придется повторить адак пятьдесят раз подряд — спорить и торговаться на базаре окажется делом, занимающим немало времени. В Амазонии также встречаются системы счета с основаниями 3 и 4.
Число, являющееся основанием, должно быть достаточно большим, чтобы позволять проговаривать числа типа сотни, не сбиваясь с дыхания, но при этом не настолько большим, чтобы нам приходилось перенапрягать память. Наиболее распространенные в истории основания — это 5, 10 и 20, и нетрудно понять почему. Эти числа получены из человеческого тела. У нас пять пальцев на руке, так что пять — первое число, которое просится, чтобы на нем перевели дух при счете от одного и выше. Следующая естественная пауза происходит из-за наличия двух рук, или десяти пальцев, а вслед за тем — двадцати пальцах на руках и ногах. (Некоторые системы — составные. Например, Линкольнширский лексикон для счета овец содержит основания 5 и 10, а также основание 20: первые десять чисел уникальны, а следующие десять сгруппированы в пятерки.) Роль, которую исторически сыграли пальцы, отражена в используемых словах, не в последнюю очередь — в наличии двух значений слова «digit»[2]. Например, в России число «пять» соотносится со словом «пясть», обозначающим раскрытую ладонь. Аналогичным же образом, слово «пять» на санскрите — панча — связано с персидским пенча, что также обозначает руку.
С того самого момента, как люди начали считать, они пользовались пальцами для облегчения счета, и не будет преувеличением сказать, в большой степени научный прогресс обязан ловкости наших пальцев. До того как бумага и карандаш стали доступны всем и везде, числа нередко выражались на хитром языке, связанном со счетом на пальцах. В VIII столетии англосаксонский теолог, бенедиктинский монах Беда Достопочтенный предложил систему счета до миллиона, которая отчасти была основана на арифметике, а отчасти — на использовании быстрых движений пальцев и рук. Единицы и десятки представлялись там левыми пальцами, включая большой; сотни и тысячи — правыми. Более высокие порядки выражались движениями рук вдоль тела; дело дошло до не вполне подобающего священнику способа представить число 90 000: «левой рукой обхвати себя за чресла, большой палец направив в сторону гениталий», — писал Беда. Знак «миллион», от которого требовалось выражение свершенности и удовлетворения достигнутым, был гораздо более изысканным: руки сложены вместе, а пальцы переплетены.
Системы с основанием 10 (десятичные) были в ходу на Западе в течение тысячелетий. Впрочем, несмотря на их соответствие устройству нашего тела, многие задавались вопросом, самое ли это подходящее основание для счета. Говорили, что идти на поводу у нашего телесного устройства — не вполне удачное решение. Шведский король Карл XII отвергал основание 10 как придумку «неотесанных простолюдинов», которые всюду лезут своими пальцами. В современной Скандинавии, считал он, требовалось основание, «доставляющее более удобств и преимуществ в использовании». Поэтому в 1716 году он приказал ученому Эмануэлю Сведенборгу разработать новую систему счета с основанием 64. Король остановил свой выбор на этом неординарном числе, потому что оно возникало из куба, как 4 ? 4 ? 4. Карл, который сражался в Великой Северной войне — и проиграл ее, — считал, что требуемые в военном деле вычисления, подобно измерению объема ящика с порохом, должны выполняться легче, если в основании системы будет лежать куб. Однако идея, которой он облагодетельствовал подданных, как писал Вольтер, «доказала единственно то, что он любил все необычное и сложное». Основание 64 требует для чисел 64 уникальных названия (и 64 символа), что делает счет довольно неудобным. Поэтому Сведенборг упростил систему до основания 8 и предложил новые обозначения, в которых 0, 1, 2, 3, 4, 5, 6, 7 переименовывались в o, l, s, n, m, t, f, u. В этой системе, таким образом, 1 + 1 = x, а m ? m = so. (Среди слов для новых чисел были поистине чудесные. Степени числа 8, которые предстояло записывать в виде lо, loo, looo, loooo и looooo, предлагалось произносить, или йодлить (на манер тирольского пения), как лу, ло, ли, ле, ла.) В 1718 году, однако, незадолго до того, как Сведенборг должен был завершить работу над своей системой, пуля оборвала жизнь короля, положив конец и его амбициозным начинаниям.
Однако идеи Карла XII были не лишены логики. На каком основании мы должны придерживаться десятичной системы лишь из-за того, что она возникла из числа пальцев у нас на руках и на ногах? Если бы люди были, например, кем-то вроде диснеевских персонажей всего с четырьмя пальцами на каждой руке, то почти наверняка мы бы жили в мире с основанием 8: ставили отметки исходя из высшего балла 8, составляли бы списки первых восьми победителей, а в гривеннике было бы восемь копеек. Математика нисколько не изменилась бы из-за введения альтернативного способа группировки чисел. Воинственный швед был прав, ставя вопрос о том, какое основание лучше всего подходит к нашим научным потребностям, и не полагаясь на систему, которая в максимальной степени соответствует нашей анатомии.
2
Два значения — цифра (то есть однозначное число) и палец. (Примеч. перев.)
- Предыдущая
- 9/88
- Следующая