Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Наука Плоского Мира III: Часы Дарвина (ЛП) - Стюарт Йен - Страница 26
Это и есть путешествие во времени.
Выждав нужное время, вы сможете превратить свою мировую линию в ЗВК и оказаться в том же месте и времени, с которого начали свое путешествие. Не назад в будущее, а вперед — в прошлое. Чем дальше в будущем находится исходная точка, тем дальше вы сможете переместиться назад во времени. Правда, у этого метода есть один недостаток: ваши путешествия в прошлое ограничены временным барьером, который возникает через некоторое время после создания червоточин. Так что поохотиться на динозавров или побегать за бабочками Мелового периода вам не удастся.
Можем ли мы в действительности создать одно из таких устройств? Можно ли пройти через червоточину?
В 1966 году Роберт Джероч нашел способ, который в теории позволяет создать червоточину с помощью гладкой деформации пространства времени, без каких-либо разрывов. Правда, есть одна сложность: на определенном этапе сборки ход времени настолько искажается, что червоточина временно начинает действовать, как машина времени, и оборудование, используемое ближе к концу сборки, переносится к ее началу. Инструменты рабочих могут переместиться в прошлое именно в тот момент, когда они решат, что работа закончена. Тем не менее, правильно составленный график работ, вероятно, решает эту проблему. Технологически развитое общество, вероятно, способно конструировать черные и белые дыры и перемещать их с помощью сильных гравитационных полей.
Однако создание червоточины — это не единственная проблема. Нужно еще удержать ее в открытом состоянии. Основная трудность связана с «эффектом кошачьей дверцы»: когда некоторый объект проходит сквозь червоточину, последняя стремится захлопнуться и «прищемить ему хвост». Чтобы этого не произошло, объект, как оказалось, должен двигаться быстрее скорости света, так что приходится искать другое решение. Любая времениподобная линия, которая начинается у входа в червоточину, должна входить в будущую сингулярность. Нельзя преодолеть сингулярность и добраться до выхода, не превысив скорость света.
Традиционный подход к решению этой проблемы состоит в том, чтобы заполнить червоточину «экзотической» материей, создающей огромное отрицательное давление наподобие растянутой пружины. Она отличается от антиматерии, поскольку представляет собой форму отрицательной энергии, в то время как энергия антиматерии положительна. С точки зрения квантовой механики, вакуум — это не пустота, а бурлящее море элементарных частиц, которые непрерывно появляются и исчезают. Нулевая энергия содержит в себе все эти флуктуации, а значит, ослабив их, мы сможем снизить энергию до отрицательного уровня. Достичь этого позволяет, к примеру «эффект Казимира», открытый в 1948 году: между двумя близко расположенными металлическими пластинами возникает состояние отрицательной энергии. Данный эффект был зафиксирован в экспериментах, но оказался довольно слабым. Чтобы получить достаточное количество отрицательной энергии, потребуются пластины размером с галактику. К тому же твердые, чтобы интервал между ними оставался неизменным.
Есть и другой вариант — магнитная червоточина. В 1907 году геометр Туллио Леви-Чивита доказал, что в рамках общей теории относительности магнитное поле может вызывать искажения пространства. Магнитное поле обладает энергией, энергия эквивалентна массе, а масса задает кривизну пространства. Более того, ему удалось вывести точное решение уравнений поля Эйнштейна, которое он назвал «магнитной гравитацией». Проблема состояла в том, что получения наблюдаемого эффекта требовалось магнитное поле, в квинтиллион раз превышающее то, которое можно было получить в лаборатории. Его идея не привлекала серьезного внимания до 1995 года, когда Клаудио Макконе понял, что Леви-Чивита по сути изобрел магнитную червоточину. Чем сильнее магнитное поле червоточины, тем сильнее скручивается ее горловина. Размер червоточины с магнитным полем лабораторного уровня был бы просто огромным — около 150 световых лет в поперечнике. Причем лаборатории пришлось бы построить по всей ее длине. Магнитное поле гигантской мощности нужно как раз для того, чтобы создать небольшую червоточину. Сильные магнитные поля могут возникать на поверхности нейтронных звезд, поэтому Макконе предположил, что магнитные червоточины стоит искать именно там. К чему все эти усилия? Дело в том, что для поддержания такой червоточины в открытом состоянии экзотическая материя не нужна.
Возможно, более подходящим решением могла бы стать вращающаяся черная дыра, которая обладает не точечной, а кольцевой сингулярностью. В этом случае путешественник может пройти через кольцо, минуя сингулярность. Анализ уравнений Эйнштейна указывает на то, что вращающаяся черная дыра соединена с бесконечным числом областей пространства-времени. Одна из них должна находиться в нашей Вселенной (при условии, что нам удастся создать в ней вращающуюся черную дыру), но другие вполне могут выходить за ее пределы. За кольцевой сингулярностью располагаются антигравитационные вселенные, в которых расстояния измеряются отрицательными величинами, а материя взаимно отталкивается друг от друга. Через червоточину можно проложить вполне законный (не требующий сверхсветовых скоростей) маршрут к любому из ее альтернативных выходов. Таким образом, если мы воспользуемся вращающейся черной дырой вместо червоточины и сможем разогнать ее входы и выходы до околосветовых скоростей, в нашем распоряжении окажется куда более практичная машина времени — ей мы сможем пользоваться, не рискуя столкнуться с сингулярностью.
Существуют и другие машины времени, основанные на парадоксе близнецов, но все они ограничены скоростью света. Если бы мы, как герои «Звездного пути», смогли превысить скорость света с помощью пространственно-деформирующего двигателя, то эти машины лучше бы справлялись со своей задачей и, вероятно, оказались бы более простыми в постройке и эксплуатации.
Но ведь теория относительности это запрещает, так?
Нет.
Движение со сверхсветовой скоростью запрещено в специальной теории относительно. Но общая теория относительности, как оказалось, такое движение разрешает. Удивительно то, что решение этой проблемы совпадает со стандартным заумным объяснением, к которому прибегают многочисленные авторы научно-фантастических книг, знакомые с релятивистскими ограничениями, но тем не менее желающие оснастить свои космические корабли сверхсветовыми двигателями. «Теория относительности запрещает материи двигаться быстрее света», — говорят они, — «но она не запрещает сверхсветового движения пространства». Предположим, что космический корабль находится в специальной области пространства и относительно нее остается неподвижным. Законы Эйнштейна при этом не нарушаются. Теперь нужно просто разогнать эту часть пространства — вместе с космическим кораблем — до сверхсветовой скорости. Вот и все!
Ха-ха, звучит довольно забавно. Вот только.
Именно такое решение применительно к общей теории относительности в 1994 году предложил Мигель Алькубьерре Мойя. Он доказал, что у уравнений Эйнштейна есть решения, описывающие подвижный пузырь, созданный за счет локальной «деформации» пространства-времени. Пространство сжимается перед пузырем и расширяется сзади. Если внутрь пузыря поместить космический корабль, он сможет «плыть» на гравитационной волне, будучи надежно защищенным статической оболочкой локального пространства-времени. Скорость корабля по отношению к пузырю равна нулю. Движется только граница пузыря, то есть пустое пространство.
Авторы научно-фантастически книг были правы. Теория относительности никак не ограничивает скорость перемещения пространства.
Двигатели, основанные на деформации пространства, обладают теми же недостатками, что и червоточины. Для искривления пространства-времени столь необычным образом необходима экзотическая материя, создающая гравитационное отталкивание. Другие варианты сверхсветового двигателя предположительно устраняют этот недостаток, но добавляют новые. Сергей Красников обратил внимание на одно затруднительное обстоятельство, связанное с двигателем Алькубьерре: внутренность пузыря теряет причинно-следственную связь с его передним краем. Находясь внутри пузыря, капитан корабля не может ни управлять им, ни даже включать или выключать. В качестве альтернативы он предложил идею «сверхсветового шоссе». Сначала корабль движется до пункта назначения с досветовой скоростью и оставляет за собой туннель, образованный деформированным пространством-временем. Обратный путь он совершает со сверхсветовой скоростью, двигаясь по готовому туннелю. Для создания сверхсветового шоссе также необходима отрицательная энергия; фактически то же самое, согласно работам Кена Олама и других исследователей, справедливо и для любого другого двигателя, основанного на деформации пространства-времени.
- Предыдущая
- 26/80
- Следующая