Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Глаз и солнце. (О свете, Солнце и зрении) - Вавилов Сергей Иванович - Страница 14
Рис. 9
Распределение энергии в спектре разных источников
Если накаливать различные твердые тела, например металлы, до одной и той же высокой температуры, то распределение энергии у них будет несколько разным. Различие вызывается неодинаковостью отражательной способности поверхности накаливаемого тела. Если поверхность сделать совершенно черной, т. е. поглощающей полностью все лучи и ничего не отражающей, то распределение энергии при одной и той же температуре будет одно и то же для любого тела.
В нагретом теле энергия движения молекул переходит в свет и, обратно, свет поглощается молекулами. Для каждой данной температуры устанавливается равновесие между поглощением и излучением света.
В главе о свете мы пришли к выводу, что излучение и поглощение света не может происходить иначе как целыми квантами hγ. Рассматривая равновесие между излучением и поглощением в теле с совершенно черной поверхностью и учитывая квантовый характер обоих процессов, можно довольно легко и вполне строго вывести закон распределения энергии света, испускаемого черным телом. Исторически решение задачи протекало как раз наоборот. В поисках правильного, соответствующего опыту, спектрального закона излучения черного тела М. Планк впервые убедился, что этот закон нельзя вывести иначе, как сделав предположение о квантовом характере излучения и поглощения света. На этом пути и произошло чреватое последствиями открытие квантовых законов природы.
На рисунке 10 изображен закон «черного излучения» для нескольких температур. По горизонтальной оси чертежа отложены длины световых волн в микронах (1 µ = 1000 mµ), по вертикальной – интенсивность, или энергия, в относительных единицах. Из рисунка видно, что по мере повышения температуры максимум спектральной кривой перемещается в сторону коротких волн. Это отвечает искони известному постепенному переходу накаливаемого металла от красного каления к белому. Теоретический закон распределения энергии в спектре черного тела подтверждается на опыте со всей доступной в наше время точностью. Частное следствие этого закона состоит в том, что произведение длины волны λ, соответствующей максимуму спектральной кривой, на абсолютную температуру (т. е. температуру Цельсия +273°) Т есть величина постоянная
λmaxT = K = 2897,18 микрон × град.
Зная величину λmах (в микронах), можно на основании этой формулы по спектру определить температуру тела.
Мы обратились к спектральному распределению света в связи с вопросом о качестве солнечного света. Солнце, несомненно, есть накаленное тело, поэтому его спектр должен быть близок к спектрам, получаемым на Земле от наших ламп и свечей. В плохой спектроскоп с широкой щелью солнечный спектр действительно кажется непрерывным. При грубом измерении распределения энергии в этом спектре получается кривая, похожая на одну из кривых для черного излучения (рис. 10). По виду этой кривой, а также из положения ее максимума можно вычислить приближенно температуру солнечной поверхности, если только предположить, что Солнце похоже на накаленное тело с черной поверхностью. Вычисление дает около 6000°. Установление более точной цифры имеет мало смысла, так как разные области солнечного диска различаются по накалу.
Рис. 10
Распределение энергии в спектре излучения черного тела при разных температурах
По оси абсцисс – длина волны в микронах, по оси ординат – интенсивность в относительных единицах. (Ввиду огромной разности в интенсивностях кривая для 6000° К на рис. 10 а не может быть полностью изображена в выбранном масштабе. На рис. 10 б приведена полная кривая для 6000° К в другом масштабе.)
Заштрихованная часть отмечает область видимого спектра
Наш глаз в смысле различения качества света много хуже самого плохого спектроскопа. Поэтому приведенные грубые результаты будут достаточны, когда в следующей главе придется сравнивать свойства солнечного света и глаза.
Физик и астроном, изучая Солнце, пользуются телескопами, совершенными спектроскопами, постоянно применяют вместо глаза фотографию. Им открываются такие детали солнечного света и его распределения по Солнцу, которые совершенно ускользают от невооруженного глаза.
В 1802 году Волластон заметил свойство солнечного спектра, почему-то ускользнувшее от внимания Ньютона. Спектр оказался испещренным черными тонкими линиями. Позднее эти темные пропасти на ярком фоне солнечного спектра подробно изучил Фраунгофер; их называют поэтому линиями Фраунгофера. В таблице 1 даны главные линии Фраунгофера для видимого спектра. Ими часто пользуются для указания той или иной области солнечного спектра. Они всегда остаются на своих местах и служат естественными отметками на спектре Солнца. Во втором столбце указаны длины волн в миллимикронах, в третьем – цветность спектральной области, в которой линии расположены.
Таблица 1
Мы сказали выше, что в плохой спектроскоп солнечный спектр кажется непрерывным, а кривая распределения энергии – правильной и плавной. Детальное изучение кривой распределения показывает, что она сплошь изъедена зазубринами как в видимой, так и в невидимой области (рис. 11). Эти зазубрины – следы линий Фраунгофера. В ультрафиолетовой области солнечный спектр довольно резко обрывается, причем граница колеблется в разное время дня и в разные времена года. Практически от Солнца до нас не доходят лучи с волнами короче 290 mµ. Более короткие волны поглощаются озоном, находящимся в верхних слоях атмосферы с максимумом около 30 км.
Рис. 11
Распределение энергии в спектре Солнца По оси абсцисс – длина волны в микронах, по оси ординат – интенсивность в относительных единицах
Как объяснить отсутствие некоторых цветов в солнечном спектре? Внесем в бесцветное спиртовое или газовое пламя поваренную соль. Пламя становится ярко-желтым; если посмотреть в спектроскоп (хороший), то сплошного спектра почти не видно, видны только рядом две желтые линии, длины волн которых в точности совпадают с фраунгоферовыми линиями D1 и D2. Точность совпадения такова, что она не может быть случайной. Разница в том, что в случае пламени получаются светящиеся линии на темном фоне, а от Солнца, наоборот, черные линии на блестящем фоне спектра.
В пламени соль распадается на хлор и натрий, светится натрий. Естественно предположить, что черные D-линии на Солнце вызываются также парами натрия. Действительно, если на пути непрерывного спектра, например от лампы накаливания, поместить сосуд с парами металлического натрия или газовое пламя, окрашенное солью, то области, соответствующие D-линиям, ослабляются, мы искусственно получим фраунгоферовы линии на фоне сплошного спектра. Стало быть, пары натрия способны и поглощать и излучать D-линии; осторожнее следует сказать, что в парах натрия громадное большинство атомов способно поглощать свет. Но, поглотив кванты света D-линий, атомы становятся «возбужденными», далее излучения не поглощают и, наоборот, через некоторое время отдают захваченную энергию в виде света. Иными словами, в накаленных парах соли есть нормальные, поглощающие атомы натрия и возбужденные, уже поглотившие и затем светящиеся.
В парах каждого элемента теми или иными способами можно возбудить свечение, состоящее из отдельных тонких спектральных линий. Число этих линий может быть очень большим. Это указывает на многообразие состояний, в которых атом может существовать «возбужденным».
- Предыдущая
- 14/21
- Следующая