Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Аксиомы биологии - Медников Борис Михайлович - Страница 38
У бактерий перенос генетической информации осуществляется от клетки к клетке непосредственно кусками ДНК (трансформация), в результате изучения этого процесса и была доказана роль ДНК как субстрата наследственности. Часто гены переносятся от бактерии к бактерии фагами, фаг может прихватить кусок ДНК хозяина и передать его в новом поколении другому. Этот процесс называется трансдукцией. Обычно ее осуществляют плазмиды, «ручные» фаги, ставшие симбионтами бактерий и не убивающие хозяина интенсивным размножением. Из подобных механизмов у бактерий в конце концов развился оригинальный половой процесс конъюгация. При нем клетки соприкасаются, между ними образует цитоплазматический мостик по которому нить ДНК перетекает из одной бактерии в другую. Любопытно, что для передачи генного материала бактерия должна иметь внехромосомный генетический элемент, названный фактором F, который, возможно, потомок плазмиды. Не имеющие его штаммы (F – ) могут только принимать чужую ДНК (аналогия между самками и самцами у высших животных; кстати, «самцов» то есть имеющих фактор F, довольно мало: у кишечной палочки их в десять раз меньше, чем «самок»). Плазмида, ведущая происхождение от фага, может вообще стать частью бактериальной хромосомы, тогда она называется эписомой. Также и F – фактор, включаясь в геном бактерий, повышает их способность к конъюгации в тысячу раз.
Из школьного курса общей биологии вы должны знать, что генетическая рекомбинация у высших организмов гораздо сложнее. И у них есть кроссинговер. Но в отличие от бактерий геном у них настолько велик, что не может быть объединен в одной хромосоме.[12]
Ядерные организмы – эукариоты – имеют в клетках от двух (у малярийного плазмодия и лошадиной аскариды) до тысячи и более хромосом, «томов» генетических программ. Перед каждым делением клетки генетические программы реплицируются. Однако так бывает не всегда. Перед наступлением полового процесса происходит мейоз – редукционное деление. Хромосомы при нем не делятся, а расходятся по клеткам, из которых потом формируются половые. Так, у человека в норме 46 хромосом из них две половые, остальные 44 идентичны у обоих полов (аутосомы). 23 хромосомы человек получает от отца, 23 – от матери, а каково сочетание отцовских и материнских хромосом в яйцеклетке или спермии – это дело случая. Число сочетаний здесь равно двум в степени n – числу хромосом в гамете. Отсюда следует, что, например, у дрозофилы с ее четырьмя хромосомами в гамете число вариантов гамет 24 = 16, у кролика 222 = 4 385 000. Предоставляю читателям самим прикинуть число вариантов гамет у папоротника (количество хромосом в гамете 630). Слияние половых клеток восстанавливает прежнее количество хромосом возникает новая генетическая программах с которой организм входит в жизнь. При смене поколений эти программы рассыпаются чтобы заново возникли другие. Генетическая рекомбинация непрерывно тасует их, как карты, поставляя отбору поистине неисчерпаемый материал. Здесь есть и отрицательная сторона: какая-нибудь сверхудачная комбинация хромосом бесследно исчезает в новом поколении, у гениальных родителей появляются заурядные дети.
По-видимому, этот великий по простоте механизм рекомбинации возник в процессе эволюции только один раз. У человека и сосны, инфузории и дрожжевого грибка половые ядра, сливающиеся впоследствии, возникают одинаковым путем: ядро с нормальным набором хромосом не разделяясь реплицирует их, так что образуется четыре набора генетических программ. Затем клетка (или только ядро у инфузорий) дважды делится, получаются четыре клетки с половинным, гаплоидным набором. Часто, особенно при формировании яйцеклеток, три из них рассасываются, дальнейшее развитие суждено только одной. Лишь немногие панцирные жгутиковые имеют одноступенчатое редукционное деление; у них это, скорее всего, вторичное упрощение.
Так, может быть, объявим генетическую рекомбинацию непреложным законом живого, пятой аксиомой? Увы, дело обстоит не столь просто. Многие организмы потеряли способность к генетической рекомбинации и благоденствуют, мы не имеем права исключать их из мира живого. Таковы всем известные амебы и инфузории потерявшие способность образовывать половое ядро, все формы, размножающиеся партеногенетическим путем, без оплодотворения (а их многие тысячи – от простейших до некоторых пород индеек). Наконец, так называемые апомиктические растения, образующие семена из нормальных, диплоидных клеток с двойным набором хромосом, хотя бы одуванчики, каждую весну золотым потопом заливающие наши газоны. Или же растения в принципе способные к рекомбинации, но размножаемые черенками клубнями, отводками (картофель бананы и т. д. и т. д.). Кроссинговер, казалось бы, шире распространен, чем половой процесс, но, например, самцы дрозофил к нему не способны.
Отсюда делаем вывод: наличие генетической рекомбинации – не безусловный критерий живого. Это не условие жизни, а ее завоевание, не аксиома, а теорема (правда, одна из самых основных).
Мой коллега Алексей Владимирович Яблоков, ознакомившись с рукописью, предложил в качестве пятой аксиомы так называемое «давление жизни», геометрическую прогрессию размножения. Рассмотрим этот вопрос.
Еще Дарвин указывал, что такой важный фактор эволюции, как борьба за существование, вытекает из «быстрой прогрессии, в которой все органические существа стремятся размножиться». Здесь тот же принцип, какой положил в основу своего гонорара легендарный изобретатель шахмат: на первую клетку доски положить одно зернышко пшеницы, на вторую 2, на третью 4 и т. д., вплоть до 264 на последней клетке. Математики назвали такой рост геометрической прогрессией. Известно, что в таком случае прирост идет лавинообразно, на нем и основан рост делящихся атомов урана в ядерной бомбе. Таких примеров биологи приводили много. Дарвин писал, что «слон плодится медленнее всех известных животных», но за 740—750 лет потомство одной пары составило бы около 19 миллионов особей. Если же мы возьмем организмы с более быстрым темпом размножения, величины получаются буквально астрономические. Многократно упоминавшаяся нами плодовая мушка дрозофила за один год дала бы столько потомства, что оно покрыло бы землю слоем в миллион миль (!) толщиной, пара воробьев за десять лет расплодилась бы до 257 716 983 636 особей. Каждый из любителей математики, имея под рукой данные о плодовитости и продолжительности жизни каких-либо организмов, на досуге может получить цифры не менее поразительные. Особенно если расчет относится к бактериям, которые в благоприятных условиях делятся, удваивают свою биомассу два раза в час.
Можно сказать, что это все теоретические выкладки, ничего подобного в природе не бывает. Не совсем так: если вид попадает в благоприятные условия, не ограничивается пищевыми ресурсами и не имеет врагов, численность его возрастает фантастически. Так бурно разросся упоминавшийся Дарвином чертополох в Аргентине, так размножались европейские кролики и американские кактусы-опунции в Австралии и американская тля филлоксера на европейских виноградных лозах. Микроорганизмы, животные и растения, оставившие после себя залежи руд, целые пласты известняковых пород, все запасы угля и нефти, попадая в благоприятные условия, перестраивают облик всей нашей планеты.
Жизнь как бы использует любой ресурс, любую возможность для размножения. Это и есть «давление жизни». Но даже если численность организмов какого-либо вида остается стабильной, потенциал его размножения – мощный резерв, поставляющий материал отбору.
Аксиома это или нет? Все же – нет, это следствие, вытекающее автоматически из принципа матричного воспроизведения. Это тоже не аксиома, а теорема, и тоже одна из главных, на которой основана вся современная биология.
И тем не менее я не могу безапелляционно утверждать что из массы положений, сформулированных биологами за последние 150 лет, я избрал в качестве аксиом именно те, которые этого названия заслуживают. И что их именно столько, сколько нужно для объяснения жизненных явлений – ни одной больше и ни одной меньше. Иными словами, отвечает ли эта система двум требованиям – полноте и независимости, как говорят математики.
12
Есть, впрочем, исключения из этого правила. У некоторых растений (энотера) и животных (скорпионы) хромосомы, соединяясь друг с другом концами, образуют кольцо, передающееся по наследству как единое целое. Но у эукариотных организмов это вторичное исключение.
- Предыдущая
- 38/39
- Следующая