Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Беседы о жизни - Галактионов Станислав Геннадиевич - Страница 30


30
Изменить размер шрифта:

Тем не менее самопроизвольного разложения метилового спирта на метан и кислород почему-то не происходит…

К сожалению, наш «молекулярный конструктор», прекрасно подходящий для моделирования пространственной структуры молекулы и ее конформационной подвижности, абсолютно непригоден в другом отношении: он никак не отражает чрезвычайно важную для химической реакции характеристику валентных связей — их сравнительную прочность, стабильность или, говоря языком физики, энергию их разрыва. Ведь при сборке или разборке молекулярных моделей любой тип валентных связей разрывается или формируется с одинаковой легкостью, а это, увы, совершенно не соответствует действительности.

На самом деле энергия разрыва валентной связи — по-видимому, нет нужды объяснять, что по величине она совпадает с энергией ее образования, — довольно сильно различается в зависимости от типа связи (одинарная, двойная, «полуторная» и т. д.) и от того, какая пара атомов образует такую связь. В нашем случае «молекулярный конструктор» позволяет в принципе формировать разные типы валентных связей, — как одинарных (C―O, О―H, C―H), так и двойных (С = О, О = О, С = С и т. д.). Однако «цена», которую система должна «заплатить» за их образование — энергия, — далеко не одинакова. Описывать, как можно теоретически рассчитать такую «цену», мы не будем (иначе над нашим изложением вновь нависнет зловещая тень квантовой механики), а сразу приведем примерный «прейскурант»:

О―H 120 ккал/моль

C―H 100 ккал/моль

С―O 90 ккал/моль

С = O 165 ккал/моль

O = O 120 ккал/моль

(Величины энергии валентных связей здесь приведены в килокалориях на один моль — единицах, имеющих наиболее распространенное (хоть и не исключительное) хождение в физико-химической практике. Вообще же в различных физических, химических, технических и т. п. расчетах используются самые разнообразные единицы энергии. Не будем, однако, придавать этому обстоятельству никакого значения, поскольку для взаимного пересчета различного рода энергетических «валют» существует определенный курс, в отличие от обычных валютных курсов, установленный раз навсегда и не подверженный влиянию какой бы то ни было конъюнктуры. Страшно даже подумать, что бы случилось, если бы в очередном номере «Журнала экспериментальной и теоретической физики» было помещено объявление о снижении с 15 июля курса джоуля по отношению к килокалории на 17 процентов!)

Итак, попытаемся с помощью нашего «прейскуранта» проанализировать реакцию окисления метилового спирта:

Расчет суммарной энергии связей компонентов, находящихся в левой части уравнения реакции, осуществляется очевидным способом:

Совершенно аналогично для правой части:

Если среди читателей нашей книги попадутся счетно-финансовые работники, они, вне всякого сомнения, воспримут эту страницу как нечто до боли знакомое. Да и не надо вовсе быть счетоводом или бухгалтером, чтобы установить полнейшее сходство приведенных табличек со счетами, выписываемыми, скажем, в сапожной мастерской или ресторане. Есть люди, считающие проверку ресторанных счетов признаком дурного тона; надеемся, что они не станут проверять также и наши расчеты, и мы не обманем их доверия. Ту же часть читателей, которые решат все же наши выкладки проверить, ожидает разочарование: у нас все правильно.

Результаты этих расчетов надо понимать следующим образом. Если нашу систему молекул «разобрать» на отдельные атомы, а затем сформировать из них совокупность веществ, соответствующую либо левой, либо правой части уравнения рассматриваемой реакции, то в первом случае выделилось бы 1140 ккал/моль, во втором — 1210. Во втором случае, таким образом, система должна «потерять» больше энергии — иначе говоря, комбинация 2Н2СО + 2Н2О является состоянием с более низким значением энергии, чем комбинация 2СН3ОН + О2. А это, в свою очередь, означает, что направленность рассматриваемой реакции определена уже хорошо знакомой нам тенденцией самопроизвольного перехода системы в состояние с более низким значением энергии. Освобождающаяся при этом энергия, равная 70 ккал/моль, то есть разности энергий двух состояний, выделяется в виде тепла.

Теперь понятно также, почему не идет самопроизвольно упомянутая реакция разложения метилового спирта на метан и кислород:

2CH3OH → 2CH4 + O2.

Если повторить наши нехитрые расчеты для этой реакции, то окажется, что для перестройки системы в требуемом направлении нужна затрата энергии — 90 ккал/моль. Иными словами, такая реакция предполагает переход из состояния с низким уровнем энергии в состояние с более высоким уровнем, что, как мы знаем, невероятно.

Правда, если уж быть совершенно точными, то придется признаться, что использованный нами метод расчета энергии, высвобождающейся в результате реакции, — несомненно, самый простой, — к сожалению, не является универсальным. В его основу положено предположение, что связь данного типа имеет одну и ту же энергию в любом соединении, а это справедливо лишь для очень ограниченного круга соединений. Для большинства реакций подобного рода расчет выглядит намного сложнее (напомним еще раз: квантовая механика!), но всегда его конечный результат — разница в энергии исходных и конечных продуктов — определяет направление химической реакции. Разумеется, мы говорим только о правильно выполненных расчетах…

Однако в биохимической литературе нередко можно встретить и обратные примеры (на этот раз речь идет о реакциях). Даже в нашем сочинении, хоть его и нельзя назвать биохимическим (впрочем, авторы и сами понимают: той карикатуре на молекулярную биологию, которая лежит сейчас перед читателем, попросту нет названия), была приведена, например, реакция образования пептидной связи между парой аминокислот — важнейшая реакция синтеза белков — и записана она была в виде:

А между тем расчет показывает, что предлагаемая реакция самопроизвольно должна идти в обратном направлении. Но ведь реакция синтеза пептидной цепочки протекает в каждом организме, и вполне убедительное подтверждение тому уже хотя бы одно только наше с вами существование. В чем же дело?

Здесь нет никакого парадокса; просто приведенная выше форма записи реакции — сокращенная, показывающая лишь существенную ее часть, — в известной мере условна. Более полная (хотя все еще весьма лаконичная и схематическая ее запись) приобретает вид:

Третий компонент, появившийся в левой части уравнения, — это аденозинтрифосфат (АТФ) — универсальное биологическое «горючее», поставляющее энергию (в виде «богатых» энергией валентных связей) для тех реакций, осуществление которых самопроизвольно невозможно. В рассматриваемом случае молекула АТФ расщепляется, причем для реализации этой реакции используется молекула воды, освобождающаяся при синтезе пептидной связи. В результате суммарный энергетический эффект всех перестроек обеспечит течение реакции в целом в направлении слева направо, то есть в направлении синтеза пептидной связи.

Следовательно, две аминокислоты, «стремящиеся» объединиться, не могут сделать это непосредственно — им необходим «посредник». Такая ситуация, вообще говоря, довольно характерна для биохимических реакций (а также для обмена квартир, где «посредник» в лице бюро обмена играет, пожалуй, еще более существенную роль). Ясно, однако, что она весьма значительно усложняет течение реакции — последовательность промежуточных превращений, приводящую к требуемому результату. И «разобраться» во всех этих сложностях и нюансах биохимической реакции, «свести друг с другом» нужные молекулы в нужный момент, способны лишь ферменты.