Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Беседы о жизни - Галактионов Станислав Геннадиевич - Страница 18
Общие контуры нашей задачи становятся все более отчетливыми: нас интересуют устойчивые состояния (конформации) белковой молекулы. Но все это время как бы за кадром остается один очень важный момент: какое значение имеет то обстоятельство, что белок — молекула «биологическая»? Чем она отличается от всякой другой?
Как мы уже знаем, этот вопрос является даже основой для странных философских изысканий: а вдруг молекула белка и в самом деле, как предполагали доктор Бауман и его современные единомышленники, обладает сознанием?
Любителей дискуссий в таком стиле мы вынуждены разочаровать: вместо захватывающего рассказа о коварстве и любви белковой глобулы нам придется заняться сухими и вполне материалистическими рассуждениями. И это будет тем более тягостным, что начать их придется с введения нового физического и даже математического понятия — локального минимума энергии внутримолекулярных взаимодействий.
Объяснить, что это такое, можно многими способами, но ни один из них не отвечает в полной мере требованиям наглядности и доступности, которые предъявляет избранный нами жанр. Можно, например, красочно описать идеально ровную площадку для игры в гольф, по которой неторопливо, заранее обдуманным маршрутом шествуют почтенные джентльмены с клюшками, стараясь как можно меньшим числом ударов загнать мяч в одну из многочисленных лунок. Но стоит ли — все равно это роскошное описание послужит лишь иллюстрацией тому обстоятельству, что потенциальная энергия мяча при попадании в лунку изменяется (уменьшается) тем более, чем глубже лунка. При выкатывании мяча из каждой такой лунки необходимо затратить некоторую энергию — в таких случаях говорят еще, что каждая лунка соответствует локальному минимуму потенциальной энергии мяча.
Можно, далее, представить себе синоптическую карту СССР, которую иногда показывают в телевизионной программе «Время» сотрудники Гидрометцентра: на ней почти всегда можно разглядеть замкнутые районы (например, Якутию), где температура значительно понижена — это тоже области локальных минимумов, но уже, естественно, температуры.
Ну и, наконец, можно сообщить читателю, что существуют многие (это важно — именно многие) конформации молекулы, в которых любое малое изменение какого-то из углов внутреннего вращения неминуемо приведет к увеличению энергии внутримолекулярных взаимодействий; каждая такая точка соответствует локальному минимуму этой энергии. Стоит отметить также, что в каждом локальном минимуме энергии внутримолекулярных взаимодействий равнодействующие всех сил, приложенные к каждому из атомов, равны нулю.
Беспомощность этих определений понятия «локальный минимум» довольно очевидна; легким утешением для нас может служить существование даже в очень серьезных курсах «шедевров» и получше. Скажем, в одном из учебников геодезии читателю доверительно сообщается: «Земля имеет форму геоида», что в переводе с обожаемого научными работниками греческого языка означает всего-то навсего: «Земля имеет форму землеподобного тела». Смеем надеяться, что наши определения все же чуточку отличаются в лучшую сторону и дают хоть какое-нибудь представление о минимуме внутримолекулярной энергии, который играет столь большую роль в задачах расчета структуры белковых молекул и в объяснении ряда их важнейших свойств.
Итак, белковая молекула может в принципе принимать очень много форм (структур), в которых внутримолекулярные силы, действующие на любой атом, уравновешивают друг друга, и каждому такому состоянию (конформации) соответствует локальный минимум энергии. Очевидно, значение энергии в различных локальных минимумах может быть различным, причем, как мы установили чуть ранее, вероятность пребывания молекулы в каждом из этих состояний тем больше, чем ниже соответствующая ему энергия.
Попробуем теперь рассматривать конформации, соответствующие различным локальным минимумам, считая, что существуют только эти конформации: промежуточным соответствуют очень высокие значения энергии, и такие структуры встречаются крайне редко. Если бы нам удалось заснять отдельную молекулу на кинопленку и подсчитать, с какой частотой появляются в кадре отдельные конформации, чаще любой другой, очевидно, встречалась бы конформация с наинизшей энергией (точно так же в настоящем кинофильме кинозвезда мелькает на экране намного чаще, чем статисты, занятые в эпизодах). Зададимся теперь вопросом: насколько чаще?
Ответ как будто не вызывает трудностей: тем чаще, чем сильнее выделяется эта конформация среди других по энергии, причем нарастает это преимущество, как мы помним, в геометрической прогрессии. Однако при более тщательном просмотре нашего фильма из жизни молекулы оказывается, что надо принимать во внимание и другие обстоятельства.
Проиллюстрируем их следующим примером. В некотором учреждении уборщица ежедневно подметает несколько комнат, среди которых одна заметно выделяется по величине (пусть это будет для определенности директорский кабинет). Слоняясь по учреждению, мы с разной вероятностью можем застать ее в каждой из комнат, причем ясно, что вероятность эта тем выше, чем больше площадь помещения (если не вдаваться в подробности относительно количества и характера мусора, оставляемого в каждой комнате). Следовательно, застать уборщицу именно в директорском кабинете вероятнее, чем в любой из прочих комнат в отдельности.
Однако, насколько велика абсолютная вероятность ее нахождения именно в директорском кабинете, зависит не только от амбиций директора, то есть от того, во сколько раз его кабинет просторнее каждой отдельной комнаты, но и от количества, а главное, площади остальных комнат. Нетрудно убедиться, что эта вероятность будет равна доле, приходящейся на кабинет, общей площади всех помещений.
Эта притча об уборщице имеет самое прямое отношение к нашей задаче. Как мы уже писали, молекула полимера способна принимать множество равновесных конформаций; какой-то из них обязательно будет соответствовать самое низкое значение энергии. Значит ли это, что молекула будет пребывать преимущественно в этой конформации?
И да, и нет: она будет наверняка оказываться в ней чаще, чем в любой другой, но вовсе не обязательно чаще, чем во всех остальных, вместе взятых. В силу различий в уровнях энергии частота реализации этой структуры может быть, скажем, в пять раз выше любой из тысячи структур с большей энергией, но на самом деле эта конформация молекулы появится в кадре нашего «полимерного» фильма довольно редко. А если число структур молекулы, сравнимых по энергии с наиболее стабильной, не тысяча, а миллионы, миллиарды? (Впрочем, здесь нам пришлось бы оперировать цифрами астрономическими, ибо именно такими цифрами выражается количество возможных конформаций достаточно длинной молекулы полимера.) Выходит, «лицо» конформации с наинизшей энергией попросту затерялось бы на экране среди тысяч «лиц» конформаций-статистов.
Самое же интересное, что с обыкновенными полимерами, не белками, так все и обстоит на самом деле. Молекулы в растворах обычно не принимают одной, строго определенной структуры, а пребывают в форме так называемого «статистического клубка»: неупорядоченной, постоянно изменяющейся конформации. Конечно же, молекула полимера имеет какую-то структуру, отличающуюся от прочих более низкой энергией, однако отличие не настолько велико, чтобы обеспечить ей четкое преобладание на фоне других, хотя и менее стабильных, конформаций.
Вот мы и подошли вплотную к объяснению таинственного смысла «биологичности» белковой молекулы. Никакой романтики или, упаси боже, мистики здесь нет, хотя присущая белкам и только им способность самопроизвольно сворачиваться в одну-единственную, строго определенную пространственную структуру достойна всяческого удивления. Ибо в этой способности и заключается одно из главнейших отличий белков от прочих полимеров.
- Предыдущая
- 18/45
- Следующая