Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Занимательная анатомия роботов - Мацкевич Вадим Викторович - Страница 13


13
Изменить размер шрифта:

Музыкальные звуки отличаются громкостью, ритмом, тембром и рядом других параметров. Для различных сочетаний этих признаков можно найти общие танцевальные движения, составить матричные таблицы и установить с их помощью закономерные связи звучаний музыки и движений в танце. Затем с помощью электронных устройств и RC – фильтров создать анализаторы, различающие не только тембр звучания, но и отдельные музыкальные ноты, и с помощью логических устройств научиться управлять движениями модели.

Рис. 44. Запись работы каменщика: а – пример записи некоторых движений, б – мотография записи работы каменщика

Возможно, что вам и матрицу составлять не придётся – это уже сделано в Советском Союзе энтузиастом, мурманским врачом А. П. Волышевым, который уже давно разработал систему для записи движений человека – мотографию. Элементы мотографической системы состоят из пяти ведущих знаков, трёх пар линеек и нескольких десятков дополнительных знаков, не превышающих числа нотных знаков в музыке. Пример записи некоторых движений показан на рис. 44, а.

В качестве иллюстрации использования мотогра – фии приводим пример записи работы каменщика (рис. 44, б). Следует отметить, что в записи работы каменщика учтено расположение кирпича слева от каменщика, а строительного раствора – справа. Каменщик держит мастерок в правой руке. На рисунке приведена запись переноса каменщиком раствора и кирпича к месту кладки.

Если вас заинтересует проблема автоматических танцев под музыку, то вначале придётся выполнить мотографическую запись выбранного танца, затем установить логические связи музыки и движений, после чего приступить к составлению логических схем танцев под музыку. Создание механической системы с электромагнитами или другими приводными устройствами будет самой лёгкой частью задачи.

Вас слушает робот

Представьте, что вы звоните по телефону приятелю и вслед за первым гудком в трубке слышите лёгкий щелчок и его голос: «Меня нет дома. Вернусь к восьми. Что вы мне хотите сказать?». Не пытайтесь уличить приятеля во лжи. Он не разыгрывает вас. И хотя слышен его голос, приятеля действительно нет дома. Вам ответил телефонный «секретарь». Когда его хозяин вернётся домой, магнитофон расскажет ему о вашем звонке и о том, что вы передали.

Как построен робот – автоответчик, поясняет рис. 45. Звук вызова (звонок) телефонного аппарата воспринимает микрофон ВМ1, преобразует в электрический сигнал, который приводит в действие сначала акустическое реле, а затем реле времени. Реле К2, Срабатывая, замыкает контакты К2.1 и подаёт питание на магнитофон, усилитель блока ответа и электромагнит ЭМ, приводящий в действие механизм подъёма телефонной трубки.

Блок ответа состоит из магнитной головки BS1 (воспроизводящей), установленной на магнитофоне, и транзисторного усилителя. Громкоговоритель ВА1 воспроизводит информационную запись, предварительно выполненную на одной из дорожек магнитной ленты. Индукционный датчик ИД с телефонного аппарата снимает сигнал сообщения и записывает его на другую дорожку магнитной ленты. По истечении времени выдержки реле К2 размыкает контакты и автоответчик переходит в исходное состояние.

Рис. 45 Схема робота-автоответчика

6. Моделирование зрения

Специалисты в области бионики ведут работы по моделированию некоторых функций человеческого глаза. Создана электронная модель сетчатки, воспроизводящая работу фоторецепторов в центральной ямке и на периферии, предложено устройство, аналогичное механизму управления движением глазного яблока. Уже есть попытки построить электронную модель цветового восприятия. Первые «видящие» роботы – это различные опознающие устройства, применяемые в медицине и криминалистике.

Принципиально то, что робот может «видеть» гораздо лучше человека. Ведь человеческому глазу доступна лишь оптическая часть спектра электромагнитных волн. А электронное устройство свободно от биологических ограничений. Его можно, например, сделать чувствительным к инфракрасным и ультрафиолетовым лучам. К электронному глазу можно подключить радар. Он способен видеть в темноте и при сверхярком свете, работать в комплексе с телескопом или микроскопом, фиксировать сверхбыстрые и сверхмедленные процессы.

Современные фотореле реагируют на невидимые глазом участки спектра (инфракрасное и ультрафиолетовое излучение), способны регистрировать изменения параметров света, происходящие с частотой до миллиона колебаний в секунду (предельная частота, воспринимаемая человеческим глазом, 20 Гц).

Как уже говорилось, электронными элементами зрения в технике являются фотоэлементы – устройства, которые при освещении меняют свои электрические характеристики (одни из них под действием света начинают пропускать электрический ток, другие сами становятся источниками тока). Основное различие между человеческим глазом и фотоэлементом состоит в том, что глаз в сочетании с мозгом создаёт детальное изображение увиденного, фотоэлемент же всего лишь различным образом реагирует на факт наличия света.

На рис. 46 показана увеличенная структура сетчатки глаза, состоящей из палочек и колбочек. Любая чувствительная к свету клетка сетчатки соединена непосредственно со зрительным нервом, а также с другими клетками, которые, в свою очередь, соединены между собой. Таким образом, световой сигнал уже на этом этапе «продумывается». Сам глаз человека выполняет часть функций осмысливания, свойственных головному мозгу.

Подобно сетчатке глаза устроен экран электроннолучевых передающих трубок, состоящий из множества микроскопических элементов диаметром около 1 мкм (рис. 47). Ток каждого микрофотоэлемента трубки коммутируется электронным лучом, построчно пробегающим по всем микрофотоэлементам экрана.

Чтобы научить робота видеть, нет нужды приделывать ему голову с глазами. Как ни странно, у роботов – манипуляторов глаза, как правило, находятся в руке… Вот вам пример. Представьте себе, что вместо рабочего у печи стоит робот – механическая рука. В управляющей вычислительной машине заложена программа его действий. Нужно только отдать команду приступить к работе (рис. 48).

Рис. 46 Структура сетчатки г газа
Рис. 47 Экран передающей те ревизионной трубки
Рис. 48. Манипулятор за работой

Робот зашевелился, протянул клешню в печь, нащупал раскалённую деталь, взял её точно посередине, осторожно вынул, перенёс, минуя окружающие предметы, к ванне и опустил в масло. Вернулся за второй деталью, взял её точно так же, потом за третьей, четвёртой… И так без устали, без передышки.

Для этого у него есть все возможности. В его клешне расположены фотоглаза, которыми робот «видит» деталь и на расстоянии, и в непосредственной близости.

На рис. 49 показана структурная схема электронного блока робота, занимающегося построением «домиков» из кубиков под зрительным контролем. Телевизионная камера наблюдает за работой руки (глаз системы). Электронно – вычислительное устройство управляет механической рукой на основе анализа телевизионных сигналов и информации о положении руки. Эта, казалось бы, очень простая задача требует создания сложнейших программ для ЭВМ. Следует сказать, что на пути к созданию машин, способных приспосабливаться к окружающей обстановке, самое трудное препятствие – проблема искусственного зрения. Это огромное поле деятельности для любого человека, интересующегося системами электронного зрения и их практическим воплощением. А вот как всё начиналось.