Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Объективное знание. Эволюционный подход - Поппер Карл Раймунд - Страница 39


39
Изменить размер шрифта:

Таким образом, Брауэр в своей лекции 1912 года (Brouwer 1914) предполагал, что для интуициониста математические объекты существуют в человеческом уме, в то время как для формалиста они существуют «на бумаге»[126].

(3) Методологические проблемы математических доказательств. Мы можем упрощенно различать два главных подхода ученых к математике. Одни математики могут интересоваться главным образом теоремами — истинностью или ложностью математических высказываний, другие — главным образом доказательствами: вопросами существования доказательств той или иной теоремы и спецификой таких доказательств. Если преобладающим является первый подход (как это, по-видимому, имеет место, например, для Пойя), тогда он обычно связан с интересом к открытию математических «фактов» и поэтому с платонизированной математической эвристикой. Если же преобладает второй подход, тогда доказательства являются не просто средствами формирования уверенности в теоремах о математических объектах, а самостоятельными математическими объектами. Как мне кажется, так обстояло дело с Брауэром: те построения, которые были доказательствами, не только создавали и утверждали существование математических объектов, они были в то же время сами математическими объектами, возможно даже наиболее важными из таких объектов. Таким образом, утверждать некоторую теорему означало для Брауэра утверждать существование некоторого доказательства для нее, а отрицать ее — означало утверждать существование опровержения, то есть доказательства ее абсурдности. Это непосредственно ведет к отказу Брауэра от закона исключенного третьего, к отрицанию им косвенных доказательств и к тезису, что существование может быть доказано только реальным построением рассматриваемых математических объектов, когда они делаются, так сказать, видимыми.

Это также ведет к отрицанию Брауэром «платонизма», под которым мы понимаем учение, согласно которому математические объекты обладают тем, что я называю «автономным» способом существования, при котором они могут существовать, не будучи созданы нами и, следовательно, без доказательства своего существования.

До сих пор я пытался понять брауэровскую эпистемологию, исходя прежде всего из предположения, что она проистекает из попытки решить определенную трудность в философии математики Канта. Теперь я перейду к тому, что содержится в названии данного раздела, — к оценке и критике брауэровской эпистемологии.

Исходя из положений настоящего доклада, можно утверждать, что одним из великих достижений Брауэра, по моему мнению, является его понимание того, что математика и, как я могу добавить, весь третий мир созданы человеком.

Эта идея является настолько радикально антиплатоновской, что Брауэр, понятно, не видел возможности ее связи с некоторой формой платонизма, под которой я имею в виду концепцию частичной автономии математики и третьего мира в том виде, как она описана ранее в разделе 3 этой главы.

Другим великим достижением Брауэра в философском плане был его антиформализм — признание им того, что математические объекты должны существовать до того, как мы сможем говорить о них.

Позвольте теперь мне вернуться к критике брауэровского решения трех групп главных проблем философии математики, сформулированных ранее в настоящем разделе.

(1') Эпистемологические проблемы: интуиция в целом и теория времени в частности.

Я не предлагаю заменить каким-либо другим термином название «интуиционизм». Это название, без сомнения, сохранится, но нам важно отказаться от ошибочной философии интуиции как непогрешимого источника знания.

Не существует авторитетных источников знания, и ни один «источник» не является абсолютно надежным[127]. Все приветствуется как источник вдохновения, стимулирования, включая «интуицию», особенно если она предлагает нам новые проблемы. Однако ничто не является несомненным, и все мы подвержены ошибкам.

К тому же следует подчеркнуть, что кантовское четкое различение интуиции и дискурсивного мышления не может быть нами принято. «Интуиция», какой бы она ни была, в значительной степени является продуктом нашего культурного развития и наших успехов в дискурсивном мышлении. Вряд ли можно принять кантовскую идею об одном стандартном типе чистой интуиции, присущем всем нам (но, возможно, не животным, хотя их перцептуальные возможности сходны с человеческими). Действительно, после того, как мы овладели дискурсивным мышлением, наше интуитивное понимание становится весьма отличным от того, какое было у нас прежде.

Все сказанное справедливо и в отношении нашей интуиции времени. Я лично считаю сообщение Бенджамина Ли Уорфа о чрезвычайно специфической интуиции времени индейцев племени хопи[128] убедительным. Однако даже если это сообщение ошибочно (что, я думаю, маловероятно), оно свидетельствует о возможностях, которые ни Кант, ни Брауэр никогда не рассматривали. Если Уорф прав, тогда наше интуитивное понимание времени, то есть способ, которым мы «видим» временные отношения, частично зависит от нашего языка, наших теорий и мифов, включенных в язык, иначе говоря — наша европейская интуиция времени в значительной степени обусловлена греческим происхождением нашей цивилизации с ее упором на дискурсивное мышление.

В любом случае наша интуиция времени может меняться с изменением наших теорий. Интуиции Ньютона, Канта и Лапласа отличаются от интуиции Эйнштейна, и роль времени в физике элементарных частиц отличается от роли времени в физике твердого тела, особенно в оптике. Физика элементарных частиц утверждает существование подобного лезвию непротяженного мгновения, "punctum temporis"{24}, который отделяет прошлое от будущего, и тем самым существование временной координаты, состоящей из (континуума) непротяженных мгновений, а в конечном итоге существование мира, «состояние» которого может быть задано для любого такого непротяженного мгновения. В оптике ситуация совершенно другая. Подобно тому как существуют пространственно протяженные растры в оптике, части которых взаимодействуют на значительном расстоянии в пространстве, так существуют и протяженные во времени события (волны, обладающие частотами), части которых взаимодействуют в течение значительного промежутка времени. Поэтому в силу законов оптики в физике не может быть какого-либо состояния мира в некоторый момент времени. Эта аргументация должна дать и действительно дает совершенно другое понимание нашей интуиции: то, что называлось кажущимся настоящим временем психологии, не является ни кажущимся, ни характерным только для психологии, а подлинным и имеющим место уже в физике[129].

Таким образом, не только общая концепция интуиции как непогрешимого источника знания является мифом, но и наша интуиция времени так же подлежит критике и исправлению, как, по признанию самого Брауэра, и наша интуиция пространства.

Главным пунктом этих своих рассуждений я обязан философии математики Лакатоса. Он заключается в том, что математика (а не только естественные науки) растет благодаря критике догадок и выдвижению смелых неформальных доказательств, а это предполагает языковую формулировку таких догадок и доказательств и потому определяет их статус как элементов третьего мира. Язык, являясь вначале просто средством коммуникативного описания доязыковых объектов, превращается в силу этого в существенную часть научной деятельности даже в математике, которая в свою очередь становится частью третьего мира. И в языке существуют слои, или уровни (независимо от того, формализованы они в виде иерархии метаязыков или нет).

Если бы интуиционистская эпистемология была права, вопрос о математической компетенции не составлял бы проблемы. (Если бы кантовская теория была права, то непонятно, почему нам, а точнее — Платону и его школе, пришлось так долго ждать Евклида[130]. Однако эта проблема существует, так как даже весьма компетентные матема-тики-интуиционисты могут не соглашаться между собой по некоторым трудным вопросам[131]. Для нас нет необходимости исследовать, какая сторона в этом споре права. Достаточно указать, что раз интуиционистское конструирование подвергается критике, то рассматриваемая проблема может быть решена лишь путем существенного использования аргумента-тивной функции языка. Конечно, критическое по существу использование языка не обязывает нас использовать аргументы, запрещенные интуиционистской математикой (хртя и здесь существует проблема, как будет показано далее). Моя точка зрения в данный момент заключается просто в следующем: раз допустимость предложенного интуиционизмом математического конструирования может быть подвергнута сомнению, — а она, конечно, может подвергаться сомнению, — то язык становится не просто средством коммуникации, без которого можно в принципе обойтись, он является необходимым средством критического обсуждения, дискуссии. В соответствии с этим он не представляет собой всего лишь интуиционистскую конструкцию, «которая объективна в том смысле, что не важно, какой субъект ее создает»[132]. На самом деле объективность даже интуиционистской математики опирается, как это имеет место во всех науках, на критикуемость ее аргументации. А это означает, что язык является необходимым как способ аргументирования, то есть как способ критического обсуждения [133].