Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Математика для любознательных - Перельман Яков Исидорович - Страница 4


4
Изменить размер шрифта:

Допустим теперь, что В – не зеркальное отражение, а реально существующий объект. Каким образом мог бы наблюдатель мира В узнать, что его мир и собственное его тело искажены, если искажение одинаково захватывает все измерения, всю обстановку? Никаким. Более того: наблюдатель в В будет думать о мире А то же, что наблюдатель в А думает о мире В; он будет убежден, что мир А искажен. Свои линии он будет считать прямыми, а наши – искривленными, свою чертежную доску плоской, а нашу – изогнутой, свои масштабные деления равными, а наши – неравными. Между обоими наблюдателями и их мирами – полная взаимность. Когда наблюдатель в А, любуясь формами «своей» статуи Аполлона, взглянет на искаженное изваяние в мире В, он найдет его, конечно, безобразно изуродованным. Гармония форм исчезнет бесследно: руки чересчур длинны и тонки, и т. п. Но что сказал бы наблюдатель из мира В? Его Аполлон представился бы ему таким же совершенным, каким представляется нам наш; он будет превозносить его красоту и гармонию форм, а нашего Аполлона подвергнет уничтожающей критике: никакой пропорциональности, руки – бесформенные обрубки, и т. п.

Если предмет перед искажающей зеркальной поверхностью меняет свое положение – приближается, удаляется, отходит влево или вправо, – то изменяется и характер искажения. Искажения могут зависеть и от времени, если допустить, что кривизна отражающей поверхности непрестанно изменяется, порою исчезая вовсе (зеркало становится тогда плоским).

Отбросим теперь зеркало, которым мы пользовались только ради наглядности, и обобщим сказанное:

Если бы вся окружающая нас вселенная претерпела любое искажение, зависящее от места и времени, при условии, что искажение распространяется на все твердые тела, в частности на все измерительные инструменты и на наше тело, – то не было бы никакой возможности это искажение обнаружить».

* * *

Микроген Лассвица обладает способностью изменять не только пространственные размеры, но и быстроту течения времени. И здесь следует отметить, что изменение темпа времени в любое число раз не может быть никакими средствами обнаружено, если оно распространяется на все явления, совершающиеся во вселенной (или в ее изолированной части, за пределы которой наблюдатель не может проникнуть). Это станет понятнее, если напомним, что единственным мерилом времени являются для нас пространственные промежутки на измерителе времени – на часовом циферблате, на звездном небе, и т. п. У нас нет никакой возможности убедиться, действительно ли часы идут равномерно, или Земля вращается равномерно, – как мы всегда допускаем. «Если бы сутки и их подразделения – часы, минуты, секунды – были неравномерны, если бы ход наших часов во времени менялся, если бы менялась и скорость вращения Земли вокруг оси и обращения вокруг Солнца, а также скорость обращения Луны вокруг Земли, если бы тому же закону изменяемости подвержены были и всякие иные мерила для времени, – мы не были бы в состоянии обнаружить этой изменяемости, и все осталось бы для нас по-старому» (Дзиобек). Не заметили бы мы никакой перемены в мире даже и в том случае, если бы «в некоторый момент все часы согласно остановились и прекратились все движения, все изменения в окружающем нас мире, а по истечении определенного промежутка времени все ожило бы вновь, продолжало двигаться и жить, – словно в сказке об окаменелом царстве, где с наивной смелостью предвосхищено то, что мы называем относительностью нашего мерила времени».

Мы видим, что мир вовсе не должен быть в действительности так неизменен, как думает большинство людей, полагаясь на привычные представления и на показания наших чувств. Напротив, мир может ежесекундно претерпевать самые фантастические изменения: уменьшаться или увеличиваться в любое число раз, «выворачиваться наизнанку» (т. е. заменяться симметричным ему миром), искажать всячески свою форму, вырастая в одних направлениях и сокращаясь в других, искривляться на всевозможные лады, может ускорять или замедлять темп событий, порою останавливая их вовсе – и никто из нас не в состоянии был бы обнаружить ни следа этих изменений. Волшебный микроген, о котором мечтал Лассвиц, даже несравненно более чудодейственный по своей силе, мог бы быть давно уже изобретен и совершать над нами свои парадоксальные метаморфозы – и никто из нас об этом не подозревал бы. Таковы следствия, неизбежно вытекающие из относительности пространства и времени[7].

Машина времени

Извлечение из повести Г. Уэллса[8]

I. ВВЕДЕНИЕ

Путешественник во времени (вполне подходящее для него название) объяснял нам малодоступные пониманию вопросы. Его серые глаза блестели и мерцали; лицо, обыкновенно бледное, разгорелось от оживления. Мы же лениво восхищались серьезностью, с которой он выяснил свой новый парадокс (каковым мы в это время считали его идею), восхищались также и плодовитостью ума этого человека. Вот что он говорил:

– Вы должны внимательно следить за моими словами, потому что я постараюсь опровергнуть несколько общепринятых идей. Я утверждаю, например, что та геометрия, которой нас учили в школе, основана на неправильных представлениях.

– Вы, кажется, хотите начать со слишком трудного для нас вопроса, – сказал Фильби, известный спорщик.

– Я совсем не требую, чтобы вы принимали мои слова на веру, без всякого обоснования. Но вы скоро согласитесь с частью моих положений, а это все, чего я требую. Вам, конечно, известно, что математической линии, линии без малейшей толщины, реально не существует. То же самое можно сказать и относительно математической плоскости. То и другое – отвлеченности.

– Правильно, – подтвердил психолог.

– Точно также куб, имеющий только длину, ширину и толщину, не может существовать реально.

– Против этого я возражаю, – сказал Фильби. – Твердое тело, конечно, существует.

– Так думает большинство. Но может ли существовать «мгновенный» куб?

– Я вас не понимаю, – сказал Фильби.

– Можно ли говорить о реальном бытии куба, который на самом деле не существовал ни малейшего промежутка времени?

Фильби задумался.

– Ясно, – продолжает Путешественник, – что каждое реальное тело должно иметь протяжение в четырех измерениях, то есть обладать длиной, шириной, толщиной и продолжительностью существования. Существует четыре измерения: три мы называем измерениями пространства, четвертое – времени. Но люди совершенно неправильно склонны считать четвертое измерение чем-то существенно отличным от трех остальных. Это происходит потому, что наше сознание в течение всей жизни, от ее начала до конца, движется в одном направлении, вдоль времени. Люди совершенно упускают из виду упомянутый факт; между тем это-то и есть четвертое измерение, хотя многие толкуют о нем, совсем не зная, о чем они говорят. В сущности, я указываю вам только новый взгляд на время. Существует всего одно различие между временем и каким-либо другим из трех измерений пространства; вот оно: наше сознание движется вдоль времени. Но многие трактуют эту идею совершенно неправильно. Вы все слыхали, что говорят о четвертом измерении?

Пространство, по мнению наших математиков, имеет три измерения. Между тем, некоторые философски настроенные люди спрашивали, почему всегда говорят только о трех измерениях; почему не может существовать другого направления под прямыми углами к остальным трем? Ученые пытались даже создать геометрию четвертого измерения. Вы все знаете, что на плоской поверхности, имеющей всего два измерения, легко изобразить предмет с тремя измерениями; упомянутые же ученые полагают, что с помощью трех измерений они могли бы построить модель четырехмерную, если бы только овладели надлежащей перспективой.