Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Характер Физических Законов - Голышев Виктор Петрович - Страница 33
Начнем с одного утверждения, казалось бы разумного, поскольку мы установили дискретный характер электронов или фотонов. Так как в детектор приходит нечто целое (электрон в нашем примере), по-видимому, разумно предположить, что электрон попадает в детектор либо через отверстие 1, либо через отверстие 2. Кажется очевидным, что, так как электрон нечто целое и неделимое, ничего другого и не может быть. Назовем это утверждение утверждением А.
Утверждение А: Электрон попадает в детектор либо через отверстие 1, либо через отверстие 2.
На самом деле мы уже немного говорили о том, что происходит с утверждением А. Если бы было верно, что электрон попадает в детектор либо через отверстие 1, либо через отверстие 2, то общее число зарегистрированных электронов должно было бы распадаться на сумму электронов двух типов. Общее число этих электронов было бы суммой числа электронов, прилетевших через первое отверстие, и числа электронов, прилетевших через второе. Но так как суммарную кривую не удается представить таким удобным образом в виде суммы двух других кривых и поскольку эксперимент, позволяющий регистрировать прилетающие электроны в случае, когда открыто только одно отверстие, показывает, что в случае двух отверстий мы не наблюдаем суммы двух вероятностей появления, приходится заключить, что это утверждение неверно.
Но если неверно, что электрон попадает в детектор либо через отверстие 1, либо через отверстие 2, может быть, он временно распадается на две половины или что-нибудь в этом роде. Итак,утверждение А ложно. Такова логика. К сожалению или нет, но логику можно проверять экспериментально. Теперь нам нужно решить, что же происходит на самом деле. Попадает ли электрон в детектор либо через отверстие 1, либо через отверстие 2, или, может быть, он успевает проскочить каждое из отверстий по нескольку раз в разных направлениях, или расщепляется временно на две части, или что-нибудь другое в этом же духе.
Нам нужно всего лишь понаблюдать за поведением электронов. А для этого нам нужен свет. Поэтому за отверстиями мы и поместим очень мощный источник света. Электроны рассеивают свет, который отражается от них, и, если свет достаточно силен, вы сможете заметить пролетающие электроны. Отойдем теперь назад и попытаемся увидеть, что происходит в момент регистрации электрона или на какую-то долю секунды до этого. Наблюдается ли вспышка за отверстием 1 или 2, или, быть может, так сказать, по полвспышки за каждым из этих отверстий? Ведь это позволит нам, наблюдая, найти, что же происходит в самом деле. Итак, включим свет, начнем наблюдать, и вот тебе на - каждый раз перед щелчком нашего детектора вспыхивает только одно отверстие - либо 1, либо 2. Оказывается, всегда, абсолютно во всех случаях, электрон, когда мы за ним наблюдаем, попадает в детектор либо через отверстие 1, либо через отверстие 2. Парадокс!
Постараемся теперь загнать природу в угол. Сейчас я вам расскажу, что для этого нужно сделать. Мы оставим наш источник света включенным и станем одновременно и наблюдать за вспышками, и считать число пролетающих электронов. Из результатов этих наблюдений составим два столбца: один - в котором мы станем отмечать электроны, пролетевшие через отверстие 1, и другой - регистрирующий электроны, пролетевшие через отверстие 2, а по мере того как будет щелкать наш детектор, станем отмечать в этих столбцах, какой их электронов попал в него. Так как же будет выглядеть столбец 1, после того как я сложу все результаты, соответствующие одному и тому же положению детектора? Что я увижу, если я наблюдаю лишь за отверстием 1? Я получу кривую N1 (рис. 32). Этот столбец оказывается распределенным точно так же, как если бы мы считали, что второе отверстие закрыто. Здесь ничего не меняется от того, наблюдаем мы за полетом электронов или нет.
Если мы закроем отверстие 2, получим то же распределение прилетающих электронов, какое мы получаем, оставляя его открытым и наблюдая за отверстием 1.
То же самое получается в результате наблюдения за отверстием 2, на этот раз получается кривая N2.
Но, послушайте, суммарное число зарегистрированных детектором электронов должно быть суммой. Оно должно равняться сумме числа N1 и числа N2, так как относительно каждого из пролетевших отверстия электронов известно, какому, первому или второму, столбцу он принадлежит. Суммарное число зарегистрированных электронов просто не может быть ничем другим, кроме суммы этих двух чисел. Оно должно распределяться как N1 + N2. Но ведь мы говорили, что оно распределено как N12. Нет, оно распределено как N1 + N2.
Конечно, на самом деле так оно и есть. Так должно быть, и так оно и есть. Если мы пометим штрихом величины, относящиеся к опыту с зажженным светом, то окажется, что N1' практически не отличается от N1 для опыта без источника света, а N2' очень мало отличается от N2. Но число N12', наблюдаемое в случае, когда свет горит и оба отверстия открыты, равно сумме числа частиц, которые мы видели пролетающими через отверстие 1, и числа электронов, пролетевших, как мы видели, через отверстие 2. Вот к какому результату мы приходим, включив свет.
Значит, в зависимости от того, включим мы свет или нет, мы получим разные результаты. Зажжем свет, и распределение будет описываться кривой N1 + N2. Выключим свет, и распределение сразу примет вид N12. Включим его снова, и снова получим N1 + N2. Вы видите, природа опять вывернулась! Приходится говорить, что свет влияет на результат. Если свет включен, то вы получите другой результат, чем если бы он был выключен. Вы можете еще сказать, что свет влияет на поведение электронов.
Если мы станем говорить об экспериментальном исследовании движения электронов, что не совсем точно сказано, то можно утверждать, что свет влияет на это движение, в результате чего электроны, которые сами по себе попали бы в верхнюю часть последнего экрана, отклоняются, так сказать, сбиваются со своей траектории и попадают в нижнюю часть, сглаживая распределение таким образом, что в результате получается просто-напросто сумма N1 + N2.
Электроны очень чувствительны. Когда вы смотрите на бейсбольный мяч и видите, как он сверкает на солнце, это ничего не значит, его траектория от этого не меняется. Но если свет падает на электрон, он сталкивает его с пути, и вместо того, чтобы делать одно, электрон делает совсем другое. Ведь вы включили свет, да к тому же такой сильный.
Предположим тогда, что мы попытаемся ослабить этот свет все больше и больше, пока он не станет совсем тусклым, и воспользуемся очень чувствительными детекторами, позволяющими наблюдать очень тусклые вспышки при очень слабом освещении. Свет становится все слабее и слабее, а очень и очень слабый свет не должен бы изменять поведение электронов настолько сильно, что это радикальным образом отразится на картине распределения, изменив ее с N12 на N1 + N2. По мере того как свет становится все более тусклым, картина все больше и больше должна напоминать то; что мы получили в отсутствие света. Так как же происходит преобразование одного распределения в другое?
Прежде всего, свет - это не морская волна. Свет также ведет себя как поток частиц, называемых фотонами, и по мере уменьшения интенсивности света вы не ослабляете эффекта, а уменьшаете число фотонов, испускаемых источником. Ослабляя свет, я получаю все меньше и меньше фотонов. Самое меньшее, что может рассеиваться на электроне, - это один фотон, и если число имеющихся в нашем распоряжении фотонов слишком мало, некоторые электроны проскакивают через отверстие в тот момент, когда поблизости нет ни одного фотона, а в этом случае я его и не увижу. Поэтому слабый свет не значит, что мы используем маленькое возмущение, а значит только, что у нас мало фотонов. В результате, если свет достаточно слаб, мне придется ввести третий столбец - для электронов, которые я "не увидел". Если свет очень яркий, в третий столбец попадает лишь несколько электронов, если он очень слаб - почти все. Итак, у нас оказалось три столбца: для отверстия 1, для отверстия 2 и для незамеченных электронов. Нетрудно догадаться, что получится у нас теперь. Замеченные электроны распределены как N1 + N2, а те, которые я не увидел, - как N12. По мере того как я делаю свет все слабее и слабее, все большую и большую часть электронов заметить мне так и не удается. А реально полученное распределение представляет собой смесь этих двух кривых, так что, по мере ослабления света, оно все более напоминает N12 и переход этот совершается непрерывно.
- Предыдущая
- 33/42
- Следующая