Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Характер Физических Законов - Голышев Виктор Петрович - Страница 18


18
Изменить размер шрифта:

Поиски законов физики - это вроде детской игры в кубики, из которых нужно собрать целую картинку. У нас огромное множество кубиков, и с каждым днем их становится все больше. Многие валяются в стороне и как будто бы не подходят к остальным. Откуда мы знаем, что все они из одного набора? Откуда мы знаем, что вместе они должны составить цельную картинку? Полной уверенности нет, и это нас несколько беспокоит. Но то, что у многих кубиков есть нечто общее, вселяет надежду. На всех нарисовано голубое небо, все сделаны из дерева одного сорта. Все физические законы подчинены одним и тем же законам сохранения.

Лекция 4.

Симметрия физических законов

Для человеческого разума симметрия обладает, по-видимому, совершенно особой притягательной силой. Нам нравится смотреть на проявление симметрии в природе, на идеально симметричные сферы планет или Солнца, на симметричные кристаллы, на снежинки, наконец на цветы, которые почти симметричны. Однако сейчас мне хотелось бы поговорить не о симметрии предметов, а о симметрии самих законов физики. Что такое симметрия предмета - понять легко, но может ли быть симметричным физический закон? Нет, конечно, но физики получают особое удовольствие от того, что берут самые обыденные слова и используют их для обозначения совсем других понятий. В нашем случае некоторые свойства физических законов казались им очень похожими на те свойства предметов, которые определяют их симметрию, и физики стали говорить о симметрии физических законов. Вот о ней-то и пойдет здесь речь.

Что такое симметрия? Посмотрите на меня, и вы убедитесь, что моя левая половина симметрична правой, по крайней мере внешне. Точно так же или несколько иначе симметрична ваза. Что все это значит? Симметричность моего тела означает, что если перенести все, что у меня есть, справа налево и наоборот, т.е. если поменять эти две стороны местами, то я буду выглядеть точно так же, как и раньше. Особого вида симметрией обладает квадрат - его можно повернуть на 90°, и он снова будет выглядеть так же, как и прежде. Известный математик Герман Вейль (1885-1955) предложил прекрасное определение симметрии, согласно которому симметричным называется такой предмет, который можно как-то изменять, получая в результате то же, с чего вы начали. Именно в этом смысле говорят о симметрии законов физики. При этом мы имеем в виду, что физические законы или способы их представления можно изменять так, что это не отражается на их следствиях. Этим свойством физических законов мы и займемся в данной лекции.

Простейшим примером симметрии такого рода - и вы сразу поймете, что это совсем не симметрия правого и левого, - может служить симметрия относительно пространственного переноса. Вот что мы имеем в виду. Если построить любую установку и при ее помощи поставить какой-нибудь опыт, а затем взять и построить точно такую же установку для точно такого же эксперимента с точно таким же объектом, но в другом месте, не здесь, а там, т.е. просто перенести наш опыт в другую точку пространства, то окажется, что во время обоих опытов происходит в точности одно и то же. Конечно, это утверждение не нужно понимать слишком упрощенно. Если бы я на самом деле построил здесь, где я сейчас сижу, какую-нибудь установку, а затем попытался перенести ее на 6 м влево, то она вошла бы в стену, со всеми вытекающими отсюда последствиями. Поэтому, говоря о симметрии относительно пространственных переносов, необходимо учитывать все, что играет в эксперименте существенную роль, и переносить все это вместе с установкой. Возьмем, например, какую-нибудь систему с маятником и попробуем перенести ее на 20 тысяч миль вправо. Ясно, что система не будет работать правильно, так как колебания маятника зависят от притяжения Земли. Но если представить себе, что вместе с установкой я переношу и нашу планету, то система будет работать по-прежнему. В том-то и дело - нужно переносить сразу все, что имеет хоть малейшее значение. Это правило звучит довольно нелепо. В самом деле, можно просто перенести экспериментальную установку, а если она не заработает, сказать, что мы перенесли еще не все, - и вы оказываетесь правы и в том и в другом случае. Но на самом деле это не так, ибо вовсе не очевидно, что мы обязательно будем правы. Интереснейшее свойство природы как раз и заключается в том, что всегда удается перенести достаточно материала, чтобы установка вела себя, как и раньше. А это уже не пустые слова.

Мне хотелось бы на примере показать, что это утверждение правильно. Возьмем в качестве иллюстрации закон всемирного тяготения, утверждающий, что сила взаимного притяжения двух тел обратно пропорциональна квадрату расстояния между ними. Напомню, что тела реагируют на силу изменением скорости в направлении силы. Возьмем теперь два тела, скажем, планету, вращающуюся вокруг Солнца, и перенесем эту пару в другую часть Вселенной. Расстояние между ними, естественно, не изменится и, следовательно, не изменяется и действующие между ними силы. Более того, в новой ситуации сохранится и скорость движения и все пропорции происходящих изменений, и в одной системе все будет происходить точно так же, как и в другой. Уже то, что в законе всемирного тяготения используется "расстояние между двумя телами", а не какое-то расстояние до центра Вселенной, показывает, что этот закон допускает переносы в пространстве.

Вот в этом и заключается одна из симметрий физических законов - симметрия относительно пространственных переносов. Другое свойство симметрии связано с тем, что для физических законов не существенны и сдвиги во времени. Запустим планету вокруг Солнца в определенном направлении. И предположим, что мы могли бы запустить ее же снова на 2 часа или на 2 года позже, запустить снова с самого начала точно таким же образом при точно таком же исходном расположении планет и Солнца, как и при первом запуске. Тогда все будет происходить точно так же, как и в первом случае, поскольку вновь закон всемирного тяготения говорит о скорости и нигде не пользуется понятием абсолютного времени, в определенный момент которого необходимо начать измерения. По совести говоря, именно в этом конкретном примере мы не очень уверены в справедливости наших утверждений. Когда мы говорили о законах гравитации, мы упомянули о возможности изменения гравитационных сил во времени. А это означало бы, что наше предположение о допустимости сдвигов во времени неверно. Ведь если гравитационная постоянная через миллиард лет окажется меньше, чем сейчас, то неверно утверждать, что через миллиард лет движение наших экспериментальных планет и Солнца будет точно таким же, как и сегодня. Но, насколько мы это знаем сейчас (а я говорю здесь о законах физики в том виде, в каком они нам известны сегодня, - хотя, поверьте, не отказался бы от возможности поговорить о них с позиций завтрашнего дня), сдвиг во времени не имеет никакого значения.

Известно, что в одном отношении это на самом деле не так. Это верно лишь в том, что касается законов физики. Но факты (а они могут сильно расходиться с известными нам законами) свидетельствуют, по-видимому, о том, что Вселенная имеет определенное начало во времени и что сейчас эта Вселенная постоянно расширяется. Могут сказать, что здесь мы тоже должны воспроизводить "географические" условия, как и при пространственных переносах, когда мы вынуждены были переносить не только установку, но и все остальное. В том же самом смысле можно утверждать, что для переноса во времени справедливо аналогичное правило и что нам нужно смещать во времени процессы расширения Вселенной вместе со всем остальным. Тогда мы должны были бы проводить наш второй эксперимент, сдвигая во времени момент рождения нашей Вселенной. Но не нам создавать вселенные. На этот процесс мы не можем оказать никакого влияния, и мы не можем даже получить экспериментальным путем хоть какое-нибудь представление о нем. Поэтому настолько, насколько это касается точных наук, мы ничего не можем сказать по этому поводу. Просто-напросто дело в том, что условия существования Вселенной, по-видимому, меняются во времени и галактики непрерывно удаляются друг от друга, так что если бы в каком-нибудь научно-фантастическом романе вы проснулись где-то в неизвестном будущем, то, измерив средние расстояния между галактиками, вы смогли бы узнать, о каком времени идет речь. Это значит, что с течением времени Вселенная не будет выглядеть так же, как она выглядит сейчас.