Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Эволюция Вселенной и происхождение жизни - Теерикор Пекка - Страница 38


38
Изменить размер шрифта:

Для Фарадея идея о силовых линиях естественно вытекала из его опытов с магнитами. Когда он бросал иглообразные железные опилки на лист бумаги, лежащий на куске магнита, то замечал, что опилки выстраиваются по линиям, идущим в определенном направлении, в зависимости от их положения относительно магнита (рис. 13.5). Он думал, что магнитные полюсы связаны магнитными линиями и что эти линии становятся видимыми с помощью железных опилок, которые выстраиваются параллельно линиям. Для Фарадея эти линии были реальными, хоть и невидимыми. Свою идею о силовых линиях Фарадей распространил и на электрические силы; он считал, что и гравитацию можно интерпретировать подобным способом. Вместо утверждения, что планета каким-то неведомым образом узнает, как она должна двигаться по орбите вокруг Солнца, Фарадей ввел понятие гравитационного поля, которое управляет планетой на орбите. Солнце генерирует поле вокруг себя, а планеты и другие небесные тела ощущают влияние поля и ведут себя соответственно. Точно так же заряженные тела генерируют вокруг себя электрические поля, а другие заряженные тела чувствуют это поле и реагируют на него. Существуют и магнитные поля, связанные с магнитами.

Рис. 13.5. Магнитные силовые линии полосового магнита, обозначенные железными опилками на листе бумаги.

Ньютон считал, что основные объекты — это частицы, связанные между собой силами; а пространство между ними пустое. Фарадей представил себе и частицы, и поля, взаимодействующие друг с другом; а это вполне современная точка зрения. Нельзя сказать, что частицы более реальны, чем поля. Обычно мы изображаем поля в виде линий, указывающих направление силы в каждой точке пространства (рис. 13.6). Чем плотнее расположены линии, тем больше сила. Возьмем в качестве примера гравитацию Солнца. Можно сказать, что, приходя со всевозможных направлений, все силовые линии оканчиваются на Солнце. Мы можем нарисовать сферы разных радиусов с центром в Солнце, при этом каждая силовая линия будет пересекать каждую сферу. Площадь сфер возрастает как квадрат их радиуса, поэтому плотность линий уменьшается обратно пропорционально квадрату расстояний. Таким образом, идея о силовых линиях прямо приводит нас к закону гравитации Ньютона (а также и к кулоновскому закону обратных квадратов для электрического поля постоянного заряда; рис. 13.7).

Рис. 13.6. Силовые линии одиночного положительного заряда и силовые линии между положительным и отрицательным зарядами.

Рис. 13.7. Гравитационные силовые линии, связанные со сферически симметричным распределением массы. Количество силовых линий, пересекающих одинаковые площади, уменьшается обратно пропорционально квадрату расстояния от центра массы.

Используя идею силового поля (например, гравитационного), нужно следовать нескольким простым правилам.

1. Гравитационное ускорение происходит вдоль силового поля, проходящего через тело.

2. Величина ускорения пропорциональна плотности линий в заданной точке.

3. Силовые линии могут заканчиваться только там, где есть масса. Число линий, заканчивающихся в данной точке, пропорционально массе этой точки.

Теперь легко доказать утверждение, над которым Ньютону пришлось немало потрудиться. Сравнивая ускорения на поверхности Земли и на орбите Луны, Ньютон предполагал, что Земля воздействует на все тела так, как будто бы вся ее масса сконцентрирована в ее центре. Почему?

Предположим для простоты, что Земля совершенно круглая и симметричная. Тогда все части ее поверхности будут одинаково покрыты приходящими силовыми линиями. Согласно третьему правилу, число силовых линий зависит от массы Земли. Если бы вся масса была сосредоточена в центре планеты, все эти линии продолжались бы до центра. Таким образом, гравитационное поле Земли не зависит от того, как масса распределена под ее поверхностью в том случае, если имеется сферическая симметрия. В частности, вся масса Земли, сконцентрированная в ее центре, создает точно такую же гравитацию, как реальная Земля.

Точно такие же рассуждения применимы и к электрическому полю. Но поскольку существует два вида электрического заряда — положительный и отрицательный, — то при изменении знака заряда направление силовых линий меняется на противоположное. Силовые линии начинаются у положительного заряда и заканчиваются у отрицательного (как видно на рис. 13.6).

Электромагнитные волны.

Силовые линии Фарадей ввел в науку интуитивно, но он не смог оформить свое открытие в виде математической теории. Это в полном объеме сделал Джеймс Клерк Максвелл, великий физик-теоретик XIX века. Максвелл получил прекрасное образование: он поступил в Эдинбургский университет, когда ему было всего 15 лет, а через три года перешел в Кембриджский университет, который закончил в 1854 году. Еще через два года он стал профессором физики в Университете Абердина в Шотландии, откуда и переехал в Лондон. В 1865 году он перебрался в свое поместье Гленлэр близ Эдинбурга, где и написал свою знаменитую работу «Трактат об электричестве и магнетизме», изданную в 1873 году (рис. 13.8).

Тем временем Кембриджский университет получил крупное пожертвование от наследников Генри Кавендиша (1731–1810), известного своими исследованиями электричества. Деньги были предназначены для создания физической лаборатории. До того времени физики Университета проводили свои опыты в собственных кабинетах. На вновь учрежденную профессорскую должность в 1871 году был избран Максвелл. Он стал первым в знаменитой плеяде кавендишских профессоров, о которых мы поговорим позднее: Джон Стретт, более известный как лорд Рэлей, а также Джозеф Томсон и Эрнест Резерфорд. Около 30 ученых Кавендишской лаборатории стали в разные годы лауреатами Нобелевской премии по физике, химии и физиологии.

Рис. 13.8. Джеймс Клерк Максвелл (1831–1879), предвидевший электромагнитные волны, и Генрих Герц (1857–1894), продемонстрировавший их существование.

Максвелл объединил отдельные законы электромагнетизма, открытые Кулоном, Ампером и Фарадеем, в то, что теперь известно как уравнения Максвелла, представляющие электричество и магнетизм как единый феномен — электромагнетизм. Из уравнений Максвелла можно увидеть, что колеблющиеся электрическое и магнитное поля могут распространяться в пространстве с большой скоростью, которую вычислил Максвелл. Ее значение оказалось столь близким к скорости света, что Максвелл в длинном письме Фарадею (1861) писал: «Независимо от того, верна моя теория или нет, я думаю, мы сейчас имеем все основания считать, что светоносная и электромагнитная среда едина…» А в более позднем письме он говорил: «Совпадение результатов, по-видимому, доказывает, что свет и магнетизм являются свойствами одной и той же субстанции и что свет есть электромагнитное возмущение, распространяющееся по полю в соответствии с законами электромагнетизма».

Таким образом, свет состоит из электрического и магнитного полей, которые колеблются перпендикулярно к направлению распространения в соответствии с ранее обнаруженной поляризацией. В знаменитом эксперименте 1887 года Генрих Герц проверил гипотезу Максвелла об электромагнитных волнах. Он сумел создать и зарегистрировать иной вид электромагнитного излучения — радиоволны. Единственное различие между радиоволнами и светом состоит в том, что в потоке света колебания электрического и магнитного полей происходят с гораздо большей частотой, чем в радиоволне. При быстрых колебаниях длина волны получается малой: у обычного света гребни волн разделены половиной микрометра (= 0,0005 мм). В радиоволнах гребни волн разделены расстоянием от 1 мм и больше, вплоть до волн длиной в километры.