Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

В мире металлов - Венецкий Сергей Иосифович - Страница 43


43
Изменить размер шрифта:

Такую гипотезу инопланетного происхождения земной жизни выдвинул известный английский ученый в области молекулярной биологии лауреат Нобелевской премии Ф.Крик совместное профессором Л.Ореллом. Гипотеза весьма любопытна, хотя в ней немало уязвимых мест.

Металл из космоса

Существует немало проектов пополнения земных запасов полезных ископаемых за счет небесных тел. В межпланетном пространстве "разгуливают" десятки тысяч так называемых астероидов, или малых планет, состоящих главным образом из железа и никеля. Орбиты вращения некоторых из них проходят сравнительно недалеко от орбиты Земли, и иногда астероиды оказываются на довольно близком расстоянии от нашей планеты. По мнению ряда ученых, теоретически возможно, используя ракетную технику, доставить астероид на околоземную орбиту, а затем развернуть на нем добычу железа и никеля.

Один из проектов предусматривает засылку на астероид специальных автоматических устройств, которые с помощью солнечных печей будут переплавлять астероидное вещество в слитки весом в миллионы тонн. Ракеты доставят эти слитки на околоземную орбиту и останется лишь благополучно спустить металл на поверхность Земли. Но как? Предлагается, например, расплавлять его на орбите и вводить в него газ, а полученные металлические пеноблоки приводнять затем в океан. Здесь они будут плавать в ожидании транспортных судов, которые доставят их на прибрежные металлургические заводы. 

По подсчетам специалистов, один кубический километр астероидного вещества при нынешних нормах потребления обеспечит Землю железом на 15 лет, а никелем - примерно на 1250 лет.

Смелые проекты, не правда ли? Но разве еще совсем недавно визит человека на Луну не воспринимался даже многими учеными лишь как дерзновенный полет фантазии?

"Неплохо, правда?"

Мысль о пополнении земных запасов железа и никеля за счет космических тел довольно часто обсуждается специалистами. Об этом, правда в шутливой форме, говорил и американский ученый Д.Фроман, который до 1962 года был техническим директором ЛосАламосской лаборатории, где ведутся исследования в области использования атомной энергии. Выступая на банкете после конференции по физике плазмы (Колорадо-Спрингс, 1961 год), Фроман сказал: "Поскольку я не очень хорошо разбираюсь в физике плазмы и термоядерном синтезе, я буду говорить не о самих этих явлениях, а об одном их практическом применении в ближайшем будущем.

Представим себе, что нам удалось изобрести космический корабль, который движется за счет того, что выбрасывает продукты реакций дейтерий — дейтерий и дейтерий - тритий. На таком корабле можно стартовать в космос, поймать там несколько астероидов и отбуксировать их на Землю. (Идея, правда, не нова). Если не очень перегружать ракету, то можно было бы доставить на Землю 1000 тонн астероидов, затратив всего около тонны дейтерия. Я, честно говоря, не знаю, из какого вещества состоят астероиды. Однако вполне может оказаться, что наполовину они состоят из никеля. Известно, что 1 фунт никеля стоит 50 центов, а 1 фунт дейтерия - около 100 долларов. Таким образом, на 1 миллион долларов мы могли бы купить 5 тонн дейтерия и, израсходовав их, доставить на Землю 2500 тонн никеля стоимостью в 2,5 миллиона долларов. Неплохо, правда?

Я уже было подумывал, а не организовать ли мне Американскую Компанию по Добыче и Доставке Астероидов (АКДДА) ?. . . Если кто-либо из присутствующих с крупным счетом в банке пожелает войти в число учредителей, пусть подойдет ко мне после банкета".

Заводы на Луне

По мнению многих ученых, постепенное истощение земных недр рано или поздно приведет к необходимости начать разработку минеральных и рудных кладовых космоса. Академик С.П.Королев говорил: "Человечество порой напоминает собой субъекта, который, чтобы натопить печь и обогреться, ломает стены собственного дома вместо того, чтобы съездить в лес и нарубить дров". Разумеется, добытая, например, на Луне и доставленная на нашу планету тонна железной руды обойдется, скажем прямо, недешево. Но ведь и первая тонна угля, полученного в современной шахте, стоит огромных денег, зато тысячная тонна уже намного дешевле, а миллионная и подавно. Так же будет со временем снижаться и себестоимость космической железной руды. Кстати, а обязательно ли доставлять на Землю руду? Нельзя ли извлекать из нее железо непосредственно в космосе? 

Еще в 1963 году советский ученый Э.Иодко предложил свою технологию получения лунного железа. Он полагает, что железо на Луне следует не плавить, а возгонять — переводить из твердого состояния в газообразное. При этом пары железа, проходя через шахту с кусками углеродистого материала, превратятся в смесь паров железа, углерода и угарного газа. В конденсаторе железо и углерод, соприкоснувшись с холодной поверхностью бесконечного транспортера, перейдут в твердое состояние и осядут на транспортере, а угарный газ уйдет в лунную "атмосферу". Регулируя температуру в шахте, можно будет повышать или понижать содержание углерода и, следовательно, получать сталь разных марок.

"Производство металла в условиях глубочайшего вакуума Луны и других космических тел — писал Э.Иодко, — позволит готовить действительно неземные по прочности, пластичности и иным свойствам стали и сплавы, не содержащие газов и неметаллических включений. По существу неблагоприятные для металлургии условия мы имеем не на Луне, а на Земле, с ее плотной и насыщенной кислородом атмосферой . . .

Луна и другие небесные тела, лишенные атмосферы, со временем не только смогут обеспечить нужды космических полетов в рядовых и высококачественных металлах, но и станут снабжать своей металлургической продукцией Землю и другие планеты".

"Эфирные поселения"

Человек давно уже рассматривает космическое пространство как место будущих поселений. Разработано множество проектов огромных орбитальных станций, немало космических городов существует на страницах научно-фантастических книг. Создана и теория "эфирных поселений", автором которой является К.Э.Циолковский. Любопытно, что для их сооружения ученый предлагал использовать материалы планет и астероидов.

В 1975 году в США был опубликован проект внеземного поселения, удаленного на расстояние около 400 тысяч километров от Земли и Луны. Этот "эфирный город", насчитывающий 10 тысяч человек, представляет собой цилиндр диаметром 100 метров и длиной один километр. Автор проекта П.Паркер считает, что 98 % материалов, необходимых для этого космического строительства, можно будет добывать на Луне.

Интересный проект орбитальной станции разработан группой принстонских ученых, возглавляемой профессором физики Джерардом О'Нейлом. "Создание новых искусственных поселений, — пишет О'Нейл, — возможно даже при существующей технологии, новые методы, которые могут понадобиться, не выходят за пределы знаний сегодняшнего дня. Ключи к решению проблемы — отношение к области вне Земли не как к пустоте, а как к среде, богатой материей и энергией ... В космосе солнечной энергии много, использовать ее удобно. Луна и астероидный пояс дадут необходимые материалы . . ."

О'Нейл приводит в проекте детальный экономический расчет космического строительства, указывает, где и в каком количестве можно будет брать необходимые материалы. С Земли он не намерен доставлять даже воду: по его мнению, следует транспортировать жидкий водород, а кислород, нужный для синтеза воды, он предлагает получать на Луне. Там же, по мысли ученого, можно будет добыть и основные строительные материалы — алюминий, титан, кремний.