Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Истина и красота. Всемирная история симметрии. - Стюарт Йен - Страница 43


43
Изменить размер шрифта:

Но по мере развития систем обозначений стало кристально ясно, что единица — ровно в той же мере часть системы вычислений, что и ее старшие братья. Таким образом, единица стала числом — правда, специальным, очень маленьким. В некотором смысле оно оказалось самым важным из всех, поскольку именно там, в единице, числа начинались. Прибавлением друг к другу большого числа единиц можно получить все остальное — и в течение некоторого времени обозначения буквально выражали эту идею, например, число семь записывалось в виде семи черточек — как |||||||.

Много позднее индийские математики поняли, что есть даже более важное число, предшествующее единице. На самом деле числа начинались не там. Они начинались в нуле, который теперь изображается символом 0. Еще позднее оказалось полезным ввести в обиход отрицательные числа — числа, меньшие чем ничто. Таким образом, с присоединением отрицательных, человечество изобрело систему целых чисел: …, ?3, ?2, ?1, 0, 1, 2, 3, …. Но этим дело не закончилось[39].

Проблема с целыми числами состоит в том, что они не позволяют представить целый ряд полезных величин. Фермер, продающий зерно, например, может пожелать указать количество пшеницы как нечто между 1 мешком и 2 мешками. Если это будет примерно посередине между этими двумя мерами, то желаемое количество мешков равно 11/2. Или несколько меньше — 11/4, или, наоборот, больше — 13/4. Таким образом (с использованием самых разнообразных систем для их обозначения) были изобретены дроби. Дроби интерполируют между целыми числами.

Достаточно сложные дроби могут интерполировать с исключительной точностью, в чем мы уже могли убедиться, рассматривал вавилонскую арифметику. Крепла уверенность, что любую величину можно представить в виде дроби.

Но тут на сцену выходят Пифагор и носящая его имя теорема. Немедленное следствие этой теоремы состоит в том что длина диагонали единичного квадрата представляет собой число, квадрат которого равен в точности 2. Иными словами, диагональ имеет длину, равную квадратному корню из 2. Такое число обязано существовать, поскольку каждый может нарисовать квадрат, а у него, разумеется, есть диагональ, а она, без сомнения, имеет длину. Но, как осознал на свою беду Гиппас, чем бы ни был квадратный корень из 2, он не может точно выражаться в виде дроби. Это число иррациональное. Таким образом, потребовалось еще больше чисел для заполнения невидимых дыр между всеми возможными дробями.

В конце концов этот процесс вроде бы достиг конечной остановки. Греки предпочитали числовым схемам геометрию, но в 1585 году Вильгельм Молчаливый[40] назначил фламандского математика и инженера Симона Стевина из Брюгге учителем своего сына Морица Оранского. Стевин занимал должности инспектора плотин, начальника снабжения армии, а также министра финансов. Эти должности, в особенности две последние, убедили его в важности ведения бухгалтерского учета, и он позаимствовал системы, использовавшиеся в итальянских конторах. В поисках такого способа представлять дроби, который соединял бы в себе гибкость индо-арабских позиционных обозначений и высокую точность вавилонских шестидесятеричных дробей, Стевин предложил аналог вавилонской системы, но с основанием 10 вместо основания 60, — то есть десятичные дроби.

Стевин опубликовал очерк, описывающий его новую систему обозначений. Он в достаточной мере осознавал проблемы маркетинга и включил утверждение, что его идеи успешно прошли «тщательные испытания людьми практической закалки, которые нашли их настолько полезными, что они добровольно отказались от своих собственных усовершенствований в пользу данного». Далее он утверждал, что его десятичная система «учит нас, что все вычисления, которые встречаются при ведении бизнеса, можно выполнить в одних только целых числах, не прибегая к помощи дробей». В обозначениях Стевина не использовалась современная десятичная запятая, нотам было нечто близкое. Там, где мы пишем «3,1416», Стевин писал бы 3

1
4
1
6
. Символ
указывал на целое число,
— на десятые,
— на сотые и т.д. По мере того как люди привыкли к этой системе, они перестали писать
,
и т.д., оставив только знак
, который мутировал в десятичную запятую.

На самом деле с использованием десятичных дробей записать квадратный корень из двух нельзя — если только в ваши планы не входит продолжать эту запись без конца. Но равным образом нельзя записать в виде десятичной дроби и 1/3. Близким к 1/3 значением будет 0,33, но еще ближе 0,333, а сверх того лучше 0,3333 и так далее. Точное представление существует — тут мы употребим это слово новым для себя способом, — только если рассматривать бесконечную последовательность троек. Но если такое приемлемо, то можно в принципе точно записать и квадратный корень из двух. В том, как там устроены десятичные знаки, не видно никакого порядка, но, взяв достаточно большое количество этих знаков, можно получить число, квадрат которого настолько близок к числу 2, насколько пожелаете. Идея в том, что если взять все десятичные знаки, получится число, квадрат которого равен точно 2.

После принятия «бесконечных десятичных дробей» система вещественных чисел стала полной. В ней оказалось возможным представить любое число, которое может потребоваться бизнесмену или математику, с любой желаемой точностью. Всякое измерение, которое только можно себе вообразить, давало результат, выразимый десятичной дробью. Если требовалось записать отрицательные числа, десятичная система с легкостью справлялась с этой задачей. Нужды ни в каких числах какого-либо другого сорта не возникало. Не осталось никаких пробелов, которые надо было бы заполнить.

Если не считать….

Те странные формулы Кардано для корней квадратного уравнения, казалось, пытались нам что-то сообщить, но что именно — оставалось крайне неясным. Если начать с совершенно, казалось бы, безобидного уравнения третьей степени — такого, где корень нам известен, — то формула не дает этот ответ в явном виде. Вместо этого она предлагает громоздкое предписание, включающее извлечение кубического корня из чего-то даже еще более громоздкого, и при этом требуется, казалось бы, невозможное — извлечение квадратного корня из отрицательного числа. Пифагорейцев ставил в тупик квадратный корень из двух, но квадратный корень из минус единицы казался еще более непостижимым.

На протяжении нескольких сотен лет возможность придания разумного смысла квадратному корню из минус единицы периодически то посещала коллективное математическое сознание, то покидала его. Никто не понимал, могут ли такие числа существовать. Постепенно, однако, зрело осознание, что если бы они существовали, то были бы исключительно полезны.

Первоначально такие «мнимые» величины использовались ровно для одной цели: указывать на задачи, не имеющие решения. Если вы желали найти число, квадрат которого равен минус единице, то формальное решение «квадратный корень из минус единицы» было мнимым — в смысле воображаемым, — поскольку такого решения не существовало. Не кто иной, как мыслитель Рене Декарт, именно так и утверждал. В 1637 году он проводил различие между «вещественными» числами и «мнимыми», настаивая, что присутствие мнимых величин означает отсутствие решения. Ньютон говорил то же самое. Но оба эти светила не принимали во внимание сделанное столетиями раньше наблюдение Бомбелли о том, что иногда мнимые величины указывают на наличие решения, — но только сигнал, который они подают, нелегко расшифровать.

вернуться

39

Читателя может заинтересовать взгляд на излагаемый здесь ход событий как на «подложную историю чисел», изложенный в книге Дж. Дербишира «Простая одержимость», которая выйдет в издательстве Corpus. (Примеч. перев.)

вернуться

40

Willem van Oranje (1533–1584) — принц Оранский, граф Нассауский, первый статхаудер Голландии и Зеландии, один из лидеров Нидерландской революции. (Примеч. перев.)