Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Семихатов Алексей - Страница 36


36
Изменить размер шрифта:

Не слишком неожиданным поэтому был выбор руководства университета в пользу Римана как второго преемника Гаусса. 30 июля 1859 года он получил должность ординарного профессора, что означало обеспеченное существование, и — видимо, как признание за ним необходимости содержания двух оставшихся в живых сестер — апартаменты Гаусса в обсерватории. Скоро последовали и другие знаки отличия. Первый — 11 августа, когда он был произведен в члены-корреспонденты Берлинской академии наук. Риман вернулся в Берлин спустя немногим более 10 лет после того, как уехал оттуда, но вернулся со скромной коллекцией венков на своем челе и был встречен с почетом теми, чьи имена составляли славу немецкой математики: Куммером, Кронеккером, Вейерштрассом, Борхардом.

Венцом триумфа Римана стало представление им на суд академии своей работы «О числе простых чисел, не превышающих данной величины». В ее первой фразе он благодарит двух людей, к этому моменту уже покойных, помощь которых (хотя и предоставившаяся намного более охотно со стороны Дирихле, чем со стороны Гаусса) позволила ему покорить высоты. Во второй фразе он демонстрирует Золотой Ключ. В третьей присваивает имя дзета-функции. Первые три предложения работы Римана 1859 года в действительности таковы:

За внимание, которое Академия выказала в мой адрес, приняв меня в качестве одного из своих членов-корреспондентов, более всего, как мне представляется, я мог бы высказать благодарность, незамедлительно воспользовавшись таким образом полученными мною привилегиями представить сообщение об исследовании частоты появления простых чисел; несмотря на длительный интерес к этому предмету со стороны и Гаусса, и Дирихле, сообщение по этому поводу представляется не лишенным некоторого интереса.

В качестве отправной точки моего исследования я исхожу из наблюдения Эйлера о выражении произведения

где p — все простые, a n — все целые числа. Функцию комплексной переменной s, которая задается каждым из этих выражений, коль скоро они сходятся, я обозначу как ?(s).

Гипотеза Римана, появляющаяся на четвертой странице той работы, утверждает некий факт о дзета-функции. Чтобы продвинуться в понимании Гипотезы, нам предстоит теперь более серьезно углубиться в устройство дзета-функции.

Глава 9. Расширение области определения

I.

Итак, мы начинаем приближаться к Гипотезе Римана. Просто чтобы освежить память, сформулируем ее еще раз:

Гипотеза Римана

Все нетривиальные нули дзета-функции имеют вещественную часть, равную одной второй.

И мы уже знаем, что такое дзета-функция! Если s — некоторое число, большее единицы, то дзета-функция определяется таким выражением (9.1):

или же, несколько более изысканным образом,

где слагаемые бесконечного ряда отвечают всем положительным целым числам. Мы видели, что если к этой сумме применить процедуру, напоминающую решето Эратосфена, то ее можно переписать как

то есть

где множители в бесконечном произведении отвечают всем простым числам.

Таким образом, получаем

что я и назвал Золотым Ключом.

Пока все прекрасно, но что это там говорилось насчет нетривиальных нулей? Что такое нуль функции? Что представляют собой нули дзета-функции? И когда они нетривиальны? Не переживайте, сейчас все будет!

II.

Позабудем на время о дзета-функции. Рассмотрим бесконечную сумму совсем другого типа:

S(x) = 1 + x + x2 + x3 + x4 + x5 + x6 + ….

Сходится ли она вообще когда-нибудь? Без сомнения. Если x равно 1/2,то сумма представляет собой просто-напросто выражение 1.1 из главы 1.iv, поскольку (1/2)2 = 1/4, (1/2)3 = 1/8 и т.д. Следовательно, S(1/2) = 2, потому что именно к этому значению ряд и сходится. Более того, если вспомнить правило знаков, то (?1/2)2 = 1/4, (?1/2)3 = ?1/8 и т.д., а следовательно, S(?1/2) = 2/3 согласно выражению 1.2 из главы 1.v. Аналогичным образом выражение 1.3 говорит нам, что S(1/3) = 11/2 выражение 1.4 — что S(?1/3) = 13/4. Легко получить и еще одно значение для этой функции: S(0) = 1, поскольку нуль в квадрате, кубе и т.д. все равно равен нулю, и остается только единица, с которой ряд начинается.

Однако если x равен 1, то S(1) есть 1 + 1 + 1 + 1 + …, а этот ряд расходится. При x равном 2 расходимость еще более явная: 1 + 2 + 4 + 8 + 16 + …. Когда x равен ?1, происходит странная вещь: по правилу знаков сумма принимает вид 1 ? 1 + 1 ? 1 + 1 ? 1 + …. Такая сумма равна нулю, если взять четное число членов, и единице, если нечетное. Данное выражение определенно не убегает на бесконечность, но оно и не сходится. Математики рассматривают такое поведение как некоторый вид расходимости. Ситуация с x = ?2 еще хуже: сумма 1 ? 2 + 4 ? 8 + 16 ? … ведет себя так, словно убегает на бесконечность сразу по двум направлениям. Такая ситуация определенно далека от сходимости, и если вы скажете, что здесь налицо расходимость, то никто с вами спорить не будет.

Короче говоря, функция S(x) имеет значения, только когда x лежит в границах между ?1 и 1, не включая сами границы. В других случаях у нее значений нет. В таблице 9.1 приведены значения функции S(x) для аргументов x между ?1 и 1.

x S(x) ?1 или меньше (нет значений) ?0,5 0,6666… ?0,333… 0,75 0 1 0,333… 1,5 0,5 2 1 или больше (нет значений)

Таблица 9.1. Значения функции S(x) = 1 + x + x2 + x3 + ….

Вот и все, что можно извлечь из бесконечной суммы. График этой функции показан на рисунке 9.1; на этом графике у функции нет вообще никаких значений к западу от ?1 и к востоку от 1. Используя профессиональную терминологию, можно сказать, что область определения этой функции заключена строго между ?1 и 1.

Рисунок 9.1. Функция S(x) = 1 + x + x2 + x3 + ….

III.

Но смотрите, нашу сумму

S(x) = 1 + x + x2 + x3 + x4 + x5 + …
вернуться
вернуться
вернуться
вернуться