Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Семихатов Алексей - Страница 32


32
Изменить размер шрифта:

Вернувшись в Геттинген после пасхальных каникул 1849 года, Риман принялся за свою диссертацию под руководством самого Гаусса. Ясно, что он рассчитывал стать преподавателем в университете. Однако путь к этой цели был неблизкий. Чтобы преподавать в Геттингене, необходимо было не только защитить диссертацию, но и получить еще более высокую квалификацию, так называемую Habilitation — вторую степень, для которой требовалось подготовить текст диссертации и прочитать пробную лекцию. Все вместе — и первая диссертация, и вторая — заняло у Римана более пяти лет — с двадцати двух и почти до двадцати восьми. В течение этих лет ему вообще ничего не платили.

С самого начала вместе с математикой Риман записался на ряд курсов по физике и философии. Эти предметы были обязательными для всех, кто желал преподавать в гимназии, к чему в основном и свелись бы перспективы карьеры для Римана, если бы он не сумел получить должность университетского преподавателя. Выбирая эти курсы, он, надо полагать, хотел подстраховаться. Однако он проявил глубокий интерес к обоим предметам, так что, вероятно, немалую роль при выборе сыграли и его личные склонности. Обстановка в Геттингене к этому времени улучшилась. Физик Вильгельм Вебер — один из членов «геттингенской семерки», уволенный в 1837 году, — вернулся в университет и снова стал там преподавать; в политическом климате наступила заметная оттепель. Старый друг и коллега Гаусса — они вдвоем изобрели электрический телеграф — Вебер читал курс экспериментальной физики, который посещал и Риман.[64]

II.

Эти пять лет неоплачиваемой научной работы должны были даться Бернхарду Риману нелегко. Он находился вдали от дома; от Геттингена до Квикборна было 120 миль, что означало двухдневное путешествие, столь же неудобное, сколь и дорогое. Однако он все же не был в полном одиночестве: в 1850 году в университет прибыл Рихард Дедекинд. Дедекинду было 19 лет — на пять меньше, чем Риману, — и он также планировал написать диссертацию. Из биографического очерка, написанного Дедекиндом и включенного в «Собрание трудов» Римана, явствует, что он питал приязнь и симпатию к своему старшему коллеге, а также глубоко восхищался его математическими способностями; несколько труднее решить, каковы в данном случае были чувства самого Римана.

Оба они защитили свои диссертации с интервалом в несколько месяцев — Риман в декабре 1851 года, а Дедекинд на следующий год. Обоих экзаменовал Гаусс, которому к тому моменту шел восьмой десяток, что не помешало ему сохранять исключительную чуткость к редким математическим талантам. По поводу диссертации, представленной молодым Дедекиндом, еще не достигшим своей математической зрелости, Гаусс написал отзыв, который лишь едва выходил за рамки сухого официального одобрения. Но по поводу диссертации Римана он разразился — а Гаусс был человеком, который нечасто расточал похвалы, — таким пассажем: «Существенная и ценная работа, которая не просто удовлетворяет всем требованиям, предъявляемым к докторским диссертациям, но и намного превосходит их».

И Гаусс не ошибся. (В том, что касается математики, он вряд ли вообще когда-либо ошибался.) Докторская диссертация Римана является ключевой работой в истории теории функций комплексной переменной. Я постараюсь подробно рассказать о теории функций комплексной переменной в главе 13, а пока достаточно сказать, что это очень глубокая, мощная и прекрасная ветвь анализа. До настоящего времени практически первое, что изучается в курсе теории функций комплексной переменной, — это условия Коши-Римана, которыми определяются хорошо себя ведущие и заслуживающие дальнейшего изучения функции. Эти уравнения в их современном виде впервые появились в докторской диссертации Римана. Эта работа также содержит первые наброски теории римановых поверхностей, которая представляет собой слияние теории функций с топологией (последний предмет в те времена также был новинкой, в нем не существовало какой бы то ни было связной системы знания, а только разрозненные результаты, восходящие ко временам Эйлера).[65] Докторская диссертация Римана была, одним словом, шедевром.

И Риман, и Дедекинд приступили ко второй ступени академического марафона, которому они себя посвятили, — второй диссертации и пробной лекции, которые требовались для занятия преподавательской должности в университете.

III.

Оставим на некоторое время Бернхарда Римана в его комнате в далеком Геттингене за трудами над диссертацией на право чтения лекций и перенесемся назад на год или два во времени и на тысячи миль в пространстве — в Санкт-Петербург. Много воды утекло под мостами этого города с тех пор, как мы побывали здесь в последний раз, наблюдая, как Леонард Эйлер радовался жизни и плодотворно работал, несмотря на старость и слепоту, во времена правления Екатерины Великой. Эйлер умер в 1783-м, а сама императрица — в 1796 году. Екатерине наследовал ее эксцентричный и безответственный сын Павел. Четырех с половиной лет правления Павла оказалось более чем достаточно для знати, чтобы организовать переворот, удушить Павла и посадить на трон его сына Александра.

Вскоре вся нация оказалась поглощена конфликтом с Наполеоном, а ее говорящая по-французски аристократия — блеском светской жизни, как это описано Толстым в «Войне и мире». После войны Александр на какое-то время увлекся «управляемым самодержавием», затем последовал провал восстания группировки, боровшейся за либеральные идеи и известной под именем декабристов, и в 1825 году трон перешел к Николаю I, склонному к более старомодному абсолютизму.

Однако подтверждение и возобновление принципов абсолютизма не могло предотвратить грандиозных социальных перемен, наиболее достопамятная из которых — первый великий расцвет русской литературы (Пушкин, Лермонтов и Гоголь). Университет в Санкт-Петербурге, в то время отделенный от академии, разросся и процветал; кроме того, были основаны новые университеты в Москве[66], Харькове и Казани. Казанский университет мог похвастаться присутствием великого математика Николая Лобачевского, который занимал должность ректора до своего увольнения в 1846 году. Лобачевский был создателем неэвклидовой геометрии, о которой довольно скоро нам будет что сказать.[67]

В 1849-1850 годах, через 25 лет после воцарения Николая I, интеллектуальная жизнь в России подверглась еще одному всплеску репрессий, вызванному реакцией Николая на европейские революции 1848 года. Число принимавшихся в университеты было сокращено, а учившиеся за границей россияне получили указание вернуться. В такой обстановке молодой преподаватель Санкт-Петербургского университета выпустил две замечательные статьи о ТРПЧ.

Первое, что необходимо сказать о Пафнутии Львовиче Чебышеве, это что его фамилия — кошмар для всякого, кто занимается поиском по базам данных. В своих изысканиях для данной книги я насчитал 32 различных варианта написания его фамилии: Cebysev, Cebyshev, Chebichev, Chebycheff, Chebychev и т.д., и т.д.[68]

А если вы обратили внимание и на необычное имя Пафнутий, то вы не одиноки. Примерно в 1971 году на него обратил внимание математик Филип Дж. Дэвис. Дэвис решил исследовать происхождение имени Пафнутий и написал о своих изысканиях исключительно забавную книгу «Нить» (1983). Если очень коротко, то имя Пафнутий имеет коптское происхождение (Papnute — «Божий человек») и проникло в Европу через коптское христианство; такое имя носил один из второстепенных Отцов Церкви в IV столетии. Присутствовавший на Никейском соборе епископ Пафнутий (Paphnutius, как обычно пишется его имя) высказывался против целибата духовенства. К более позднему времени относится вскользь упоминаемый Дэвисом преподобный Пафнутий Боровский, сын знатного татарина; в возрасте 20 лет он удалился в монастырь, где и оставался до своей смерти в 94-летнем возрасте (1478). Вот что говорит агиограф этого Пафнутия: «Он был девственник и аскет и в силу этого великий чудотворец и пророк». (Примерно посередине моей работы над этой главой я получил электронное письмо от читательницы моей веб-колонки с просьбой предложить имя для ее новой собаки. Так что теперь некий Пафнутий гоняет белок где-то на Среднем Западе.)

вернуться

64

Он проработал полтора года в качестве ассистента в физической лаборатории Beбера, за что могли платить кое-какое скромное жалованье, так что, возможно, все же не был совершенно лишен средств.

вернуться

65

Топология представляет собой «геометрию резинового листа» — изучение тех свойств фигур, которые остаются неизменными при растяжениях, но без разрезов и склеек. Поверхность сферы топологически эквивалентна поверхности куба, но не поверхности бублика или кренделя. Слово «топология» было введено в обиход Йоханом Листингом в 1836 г. в письме к своему старому школьному учителю. В 1847 г. Листинг написал небольшую книгу, озаглавленную «Предварительные наброски по топологии». Он был профессором математической физики в Геттингене в то же время, когда там находился Риман, и Риман, без сомнения, знал и его самого, и его работы. Однако Риман, по-видимому, никогда не использовал слово «топология», всегда употребляя для этой цели латинский термин, который предпочитал Гаусс, analysis situs («анализ положения»).

вернуться

66

Московский университет, как мы помним, был основан Ломоносовым и Шуваловым еще в 1755 г. (Примеч. перев.)

вернуться

67

Кроме того, он явился персонажем шуточной песни «Лобачевский», написанной в 1959 г. математиком и музыкантом Томом Лерером. (Нельзя сказать, чтобы содержание этой достаточно известной песни популярного исполнителя добавляло математической славы ее герою. Впрочем, Николай Иванович в этом и не нуждается. — Примеч. перев.)

вернуться

68

Русским исследователям по понятным причинам не приходится сталкиваться с этой проблемой, но зато многие (если не все) русскоязычные математики произносят эту фамилию не «Чeбышев», а «Чебышoв». (Примеч. перев.)