Вы читаете книгу
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Семихатов Алексей
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Семихатов Алексей - Страница 15
Чтобы рассказать об отношениях, в каких состояли между собой Гаусс и ТРПЧ, надо объяснить главную особенность Гаусса как математика. Он опубликовал намного меньше, чем написал. Из его переписки, сохранившихся неопубликованных статей и различного рода указаний, которые можно найти в опубликованных работах, видно, что он представил миру лишь часть всех сделанных им открытий. Теоремы и доказательства, которые прославили бы кого-нибудь другого, Гаусс оставлял заброшенными в своих личных дневниках.
Есть, наверное, две причины, объясняющие столь вопиющее небрежение. Одна — отсутствие честолюбия. Уравновешенный, самодостаточный и экономный человек, лишенный материальных благ в детстве и юности и так, по-видимому, и не приобретший к ним вкуса в зрелом возрасте, Гаусс не сильно нуждался в чьем бы то ни было одобрении и не стремился к продвижению по социальной лестнице. Другая причина — намного более распространенная среди математиков во все времена — состояла в перфекционизме. Гаусс не мог заставить себя представить свои результаты на суд других, пока эти результаты не окажутся отшлифованы до блеска и расставлены в безупречном логическом порядке. На его личной печати было изображено дерево с редко висящими плодами и девизом «Pauca sed matura» — «Немного, но спелые».
Как я сказал, перфекционизм — частая проблема среди математиков, из-за которой чтение опубликованных математических статей нередко превращается в очень тяжелое занятие. В одной из книг, получивших некоторую известность в современной психологической литературе, «Представление себя в повседневной жизни», Эрвинг Гоффман развивает теорию «социальной драматургии», согласно которой каждый результат деятельности, создаваемый «для внутреннего пользования» в беспорядке и не без вмешательства случайности, представляется «для внешней аудитории» в виде законченного и совершенного творения. Эту мысль хорошо иллюстрируют рестораны. Блюда, приготовленные среди стука и звона посуды, криков поваров в раскаленной кухне, предстают перед публикой как творения безупречно сервированные, на сверкающих тарелках, подаваемые проворными мурлыкающими официантами. В значительной своей части так же устроен и интеллектуальный труд. Вот что пишет Гоффман:
В тех взаимодействиях, где индивид представляет результат своей деятельности другим людям, он склонен обнародовать только конечный продукт; они же судят о нем на основе вещей законченных, отполированных и расфасованных. В ряде случаев, если для завершения деятельности было достаточно лишь очень небольшого усилия, этот факт будет скрыт. В других случаях сокрытию подлежат долгие, изнурительные часы одинокого труда…
Опубликованные математические статьи нередко содержат слегка раздражающие высказывания типа «Отсюда следует, что…» или же «Ясно, что…», тогда как в действительности совершенно не следует и абсолютно не ясно, пока вы не потратите те же шесть часов, что потратил автор, на прописывание промежуточных шагов и проверку их правильности. Об английском математике Г.X. Харди, с которым мы еще встретимся ниже, рассказывают такую историю. Дойдя на лекции до определенного места в своих рассуждениях, он сказал: «Теперь очевидно, что…» Тут он остановился, замолчал и несколько секунд простоял без движения с нахмуренными бровями. Потом вышел из аудитории. Минут через двадцать он вернулся, улыбаясь, и продолжил: «Да, действительно, очевидно, что…»
Но кроме отсутствия амбиций Гаусс демонстрировал и отсутствие такта. Он нажил массу неприятностей в общении с коллегами-математиками из-за того, что ссылался на открытия, которые он сделал, но не опубликовал за годы до того, как другие открывали то же самое, однако публиковали свои результаты. Дело было не в тщеславии — Гауссу не было свойственно тщеславие, — а в том, что доктор Джонсон называл «грубой бесчувственностью». Например, в опубликованной в 1809 году книге Гаусс ссылается на метод наименьших квадратов, придуманный им в 1794 году (способ найти наилучшую «подгонку» для некоторого количества экспериментальных данных). В момент, когда он сделал это открытие, он его, разумеется, не опубликовал. Принадлежащий к чуть более старшему поколению французский математик Адриен-Мари Лежандр открыл и опубликовал этот метод в 1806 году; он был разъярен, когда Гаусс приписал приоритет открытия себе. У нас нет сомнений в правоте Гаусса — тому имеются документальные подтверждения, — но если Гаусс желал, чтобы его имя ассоциировалось с этим результатом, ему надо было его опубликовать. Он, однако, не беспокоился, будет ли увековечено его имя, и не намеревался публиковать свои результаты, если ему не хватало времени отполировать их до полного совершенства.
В декабре 1849 года Гаусс вел переписку с немецким астрономом Йоханом Францем Энке (именем которого названа знаменитая комета)[24] Энке высказал кое-какие комментарии по поводу частоты появления простых чисел. Ответное письмо Гаусса начиналось так:
Любезное сообщение о ваших наблюдениях по поводу частоты появления простых чисел заинтересовало меня более, чем просто упоминание. Оно напомнило мне мои собственные изыскания по тому же предмету, начало которым было положено в далеком прошлом, в 1792 или 1793 году. <…> Одна из первых вещей, которые я сделал, состояла в том, что, обратив внимание на уменьшающуюся частоту, с которой появляются простые числа, я их вычислил в нескольких группах из тысячи чисел и бегло набросал результаты, листок с которыми прилагаю к письму. Я вскоре осознал, что при всех своих флуктуациях эта частота в среднем близка к величине, обратно пропорциональной логарифму… (Курсив мой. — Дж. Д.) С тех пор я время от времени (поскольку мне недостает терпения, чтобы последовательно посчитать весь интервал) уделяю свободные четверть часа, чтобы то тут, то там пересчитать еще один отрезок длиной в тысячу; но в конце концов я забросил это дело, не добравшись толком и до миллиона.
Итак, начиная с 1792 года — когда ему было лишь 15 лет! — Гаусс забавлялся пересчетом всех простых чисел в интервале из 1000 чисел за раз и довел эти вычисления до сотен тысяч («не добравшись толком и до миллиона»). Чтобы представить себе, усилия какого порядка здесь требуются, я задался целью извлечь все простые числа из отрезка в тысячу чисел от 700 001 до 701 000, пользуясь при этом лишь теми средствами, которые могли быть доступны Гауссу, — карандашом, несколькими листами бумаги и списком простых чисел до 829 — именно такие простые требуются в процессе поиска простых среди чисел до 701 000.[25] Сознаюсь, что я бросил это занятие через час, когда я провел вычисления с простыми делителями до 47 — что означает, что мне оставалось еще 130 простых делителей. Я приглашаю вас самостоятельно попробовать такое упражнение. Это и были гауссовы «свободные четверть часа» (unbeschaftigte Viertelstunde).
Предложение, выделенное курсивом в отрывке из письма, которое Гаусс написал Энке, и составляет один из двух связанных с ТРПЧ результатов, обсуждавшихся в главе 3.ix. Как там было замечено, это утверждение эквивалентно самой ТРПЧ. Нет никаких сомнений в том, что Гаусс действительно работал над этим в начале 1790-х годов. Его заявлениям было найдено документальное подтверждение, так же как и другим заявлениям того же типа. Он просто не трудился публиковать свои результаты.
Любопытно, что первая опубликованная работа, относящаяся к ТРПЧ, принадлежит тому самому Адриену-Мари Лежандру, которого так возмутило заявление Гаусса об открытии им метода наименьших квадратов. В 1798 году — через пять или шесть лет после того, как Гаусс докопался до формулировки ТРПЧ, но не предоставил свои результаты в распоряжение человечества, — Лежандр опубликовал книгу, озаглавленную «Очерки о теории чисел», в которой он на основе своих собственных подсчетов числа простых чисел высказал предположение, что
24
После кометы Галлея — вторая комета, последовательные зафиксированные появления которой были после трудоемких вычислений связаны с одним и тем же космическим телом. (Примеч. перев.)
25
Чтобы узнать, является ли простым некоторое число N, надо просто делить его по очереди на числа 2, 3, 5, 7, … до тех пор, пока или одно из них не разделит N нацело, что будет означать, что N не простое, или… или что? Как узнать, когда остановиться? Ответ: остановиться надо, когда простое, на которое вы собрались разделить, оказывается больше, чем vN.Если, скажем, N равно 47, то vN = 6,85565…, так что надо проверить только делимость на 2, 3 и 5. Если ни одно из них не делит 47, то, значит, 47 — простое. Почему не надо проверять 7? Потому что 7?7 = 49, так что, если бы число 7 точно делило 47, частное было бы каким-то числом, меньшим 7. Аналогично, v701000 равен 837,2574. Последнее простое число ниже этого равно 829, а следующее простое выше этого есть 839. Если бы 839 делило 701000, то частное было бы числом, меньшим 839 — или некоторым простым, меньшим 839 (которое, следовательно, уже было проверено), или же составным, равным произведению еще меньших простых сомножителей…
- Предыдущая
- 15/95
- Следующая