Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Пятьсот двадцать головоломок - Дьюдени Генри Эрнест - Страница 53
Быть может, наши читатели, пожелав испытать собственные силы, захотят найти общее решение данной задачи?
[Существует и другое решение: тупоугольный треугольник с основанием 66, сторонами 41 и 85 и высотой 40. Медиана этого треугольника равна 58. В этом случае высота опускается на продолжение основания, образуя новый, прямоугольный треугольник с основанием 9 и сторонами 40 и 41. — М. Г.]
278. Известны лишь расстояния 15 и 6 км. Все, что нужно сделать, — это разделить 15 на 6 и прибавить 2, при этом получится 4½. Разделив затем 15 на 4½) получите 3⅓ км. Это и будет искомым расстоянием между двумя пунктами.
Приведенный способ применим во всех случаях, когда пути образуют прямоугольный треугольник. Простые алгебраические выкладки покажут, откуда взялась константа 2.
Проверить справедливость нашего решения можно следующим образом. Стороны треугольника равны 15, 9⅓ (6 плюс 3⅓) и 17⅔ км (для того чтобы независимо от маршрута расстояние равнялось 21 км). Чтобы избавиться от дробей, умножим все числа на 3 и получим 45, 28 и 53. Если 45 2(2025) плюс 28 2(784) равно 53 2(2809), то все верно, а это равенство можно легко проверить.
279. На рисунке показаны все расстояния. Спросившему нужно было всего лишь возвести в квадрат 60 км, проделанные первым мотоциклистом (3600), и разделить результат на удвоенную сумму этих 60 и 12 км, составляющих расстояние от дороги ABдо C, то есть на 144. Проделав выкладки в уме, он, конечно, заметил, что результат можно получить, разделив 300 на 12, и поэтому сразу же нашел верный ответ — 25 км. Я не показываю здесь, как можно определить, если потребуется, остальные расстояния; сделать это совсем нетрудно.
280. При тех размерах, которые приведены на приложенном к задаче рисунке, никакого треугольника построить вообще нельзя, так как сумма двух меньших сторон не будет превосходить третьей стороны. Очевидно, профессор хотел проверить сообразительность своих учеников.
281. Это снова была шутка. Владелец участка может строить дом, где пожелает, поскольку сумма перпендикуляров, опущенных из любой внутренней точки равностороннего треугольника на стороны, равна высоте данного треугольника.
282. Всего таких квадратов 19. Из них 9 того же размера, что и квадрат, отметенный буквами a, 4 того же размера, что и квадрат, отмеченный буквами b, 4 размера cи 2 размера d. Если убрать 6 фишек, отмеченных буквой e, то из оставшихся фишек нельзя будет образовать ни одного квадрата.
[На самом деле квадратов 21. Не сумеет ли читатель найти два квадрата, пропущенные Дьюдени? Ответ на вторую часть задачи остается тем не менее верным. — М. Г.]
283. Число способов, с помощью которых из 21 дерева можно выбрать 3, равно
× × , или 1330. Треугольник можно образовать из любых трех деревьев, не лежащих на одной прямой. Три дерева на пунктирной прямой ABможно выбрать 20 способами, на следующей параллельной прямой с пятью деревьями — десятью способами, на следующей — четырьмя и на следующей — одним способом, что в совокупности составляет 35 способов. Аналогично прямая BCвместе с параллельными даст 35 способов и прямая ACс параллельными — тоже 35 способов. Далее, прямая ADвместе с прямыми, ей параллельными, даст 3 способа, а прямые BFи CEсо своими параллельными — по 3 способа каждая. Следовательно, 3 дерева, лежащие на одной прямой, можно выбрать 35 + 35 + 35 + 3 + 3 + 3 = 114 различными способами. Значит, 1330 - 114 = 1216 и есть искомое число способов, с помощью которых можно огородить треугольный участок.284. На рисунке пунктиром показаны окружность, ограничивающая красный круг, и вписанный в нее правильный пятиугольник. Общий центр окружности и пятиугольника обозначен буквой C. Найдем точку D, равноотстоящую от A, Bи C, и радиусом ADпроведем окружность ABC. Пять дисков такого размера полностью покроют круг, если их центры поместить в точки D, E, F, Gи H. Если диаметр большого круга равен 6 дм, то диаметры дисков немного меньше 4 дм (диаметры дисков равны 4 дм «с точностью до ½ дм»). Если у вас нет никаких тайных отметок на круге, то потребуется немного внимания и тренированности, чтобы класть диски на нужные места, не сдвигая их потом.
Следует добавить, что большой круг можно покрыть, если отношение диаметров превышает 0,6094185, и невозможно, если оно меньше 0,6094180. В нашем случае, когда все диски проходят через центр, отношение равно 0,6180340.
285. Чтобы разделить круглое поле тремя изгородями равной длины на 4 равные части, первоначально следует разделить на 4 части диаметр круга, а затем по обе его стороны описать полуокружности, как показано на рисунке. Изогнутые линии изобразят тогда искомые изгороди.
286. Если построить прямоугольник, у которого одна сторона равна диаметру круга, а другая в 3 раза больше, то его диагональ будет довольно близка к ответу. Практически ее отношение к диаметру будет равно
, или 3,1622... Мы рекомендуем следующий метод.Проведем диаметр AB. Разделим точкой Dполуокружность пополам. Радиусом ACиз точек Aк Bсделаем засечки Eи Fи проведем прямые DEи DF. Отрезок DGплюс отрезок GHдадут ¼ длины окружности IKс относительной погрешностью 0,005. Ломаная IKLMи будет искомой.
Существует другой метод, дающий относительную погрешность 0,017, но он сложнее.
287. Поскольку внешние колеса движутся вдвое быстрее внутренних, то длина окружности, которую они описывают, в 2 раза больше длины внутренней окружности. Следовательно, диаметр одного круга больше диаметра другого в 2 раза. Так как расстояние между колесами равно 1,5 м, то диаметр большего круга равен 6 м. Умножив 6 м на 3,1416 (обычное приближенное значение числа π), мы получим 18,85 м — длину окружности большего круга.
288. Первый компаньон должен пользоваться точильным кругом до тех пор, пока радиус круга не уменьшится на 1,754 см. Второй должен уменьшить радиус еще на 2,246 см, оставив третьему 4 см и отверстие. Это очень хорошее приближение.
289. Окружности переднего и заднего колес равны соответственно 15 и 18 футам Таким образом, каждые 360 футов переднее колесо делает 24 оборота, а заднее — 20 и разность составляет 4 оборота. Если длину окружности уменьшить на 3 фута, то 12 в 360 уложится 30 раз, а 15 уложится 24 раза и разность составит 6 оборотов
290. Диаметр внутреннего круга в два раза меньше наружного, следовательно, и его окружность вдвое меньше. Если бы он просто прокатился вдоль воображаемой линии CD, то ему на это потребовалось бы два оборота: после первого точка Dзаняла бы положение E. Но точка Bтогда попала бы в F, а не в G, что абсурдно. Дело в том, что внутренний круг делает один оборот, но он катится по линии CDкак за счет собственного вращения, так и за счет переноса. Точка Aпопадает в Bлишь благодаря обороту всего колеса, но если вы представите себе точку в центре колеса (у точки нет длины окружности), то она проходит то же расстояние за счет того, что я называю переносом. Траектория точки Aпредставляет собой обычную циклоиду, а точка Cпо дороге в Dописывает трохоиду.
- Предыдущая
- 53/70
- Следующая