Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Пятьсот двадцать головоломок - Дьюдени Генри Эрнест - Страница 20
— Все понятно, от Aдо В...
А не смог бы читатель столь же быстро определить это расстояние?
280. Стоимость сада.Однажды профессор Рэкбрейн поведал своим ученикам о том, что его соседу предложили садовый участок. Участок имеет форму треугольника, размеры которого указаны на рисунке.
Сколько соседу придется заплатить за него, если один квадратный метр стоит 10 долларов?
281. Выбор места.Один человек купил земельный участок, расположенный между тремя прямыми дорогами, которые образуют равносторонний треугольник. Ему захотелось построить дом таким образом, чтобы с каждой из дорог к нему вели три прямые подъездные аллеи, На рисунке изображен один из возможных вариантов.
Где следует построить дом, чтобы по возможности уменьшить расход на прокладку аллей?
282. Крест из фишек.Расположите 20 фишек в форме креста, как показано на рисунке. Сколько вы насчитаете различных случаев, когда четыре фишки сами по себе образуют правильный квадрат?
Например, квадраты образуют фишки, составляющие концы креста, фишки, расположенные в центре, а также фишки, которые отмечены буквами Аи В.
Какие 6 фишек следует убрать, чтобы никакая четверка оставшихся фишек не располагалась в вершинах какого-нибудь квадрата?
283. Треугольные посадки.У одного человека было 21 дерево. Деревья были посажены в форме треугольника (см. рисунок).
Если владелец деревьев захочет огородить какой-нибудь треугольный участок своей земли с деревьями по углам, то сколькими способами он сможет это сделать?
Пунктирные линии показывают три возможных способа. А сколько их всего?
284. Круг и диски.Как-то на ярмарке мы увидели человека, который сидел за столом, покрытым клеенкой с большим красным кругом в центре. Человек предлагал публике закрыть круг пятью тонкими дисками, которые лежали рядом, обещая тому, кто сумеет это сделать, ценный приз. Все диски были одинакового размера, разумеется, меньшего, чем красный круг (на рисунке для наглядности изображены только три диска).
Человек утверждал, что справиться с заданием очень легко, и сам, играючи, покрывал круг дисками. Те же, кто пытался сделать это после него, неизменно терпели неудачу. Я забыл вам сказать об одном существенном уcловии: раз положив диск, его нельзя было больше сдвигать, иначе справиться с заданием удалось бы довольно просто. Предположим, что диаметр красного круга равен 6 дм. Каким должен быть наименьший диаметр (скажем, с точностью до ½ дм) пяти дисков, чтобы с их помощью можно было бы закрыть круг?
285. Три изгороди.Однажды за чашкой чая полковник Крэкхэм сказал:
— У одного человека было круглое поле, и он захотел разделить его на 4 равные части тремя изгородями равной длины. Как это можно сделать?
— А для чего ему нужны были заборы одинаковой длины? — спросила Дора.
— Сведений об этом не сохранилось, — ответил полковник. — Нам не известно также ни того, зачем он делил поле на 4 части, ни того, деревянными или железными были изгороди, ни того, пастбище или пашню представляло собой поле. Я не могу даже назвать имя этого человека, не то что сказать, каков цвет его волос. Можно показать, что для решения головоломки все эти сведения не существенны.
286. Квадратура круга.Задача о квадратуре круга сводится к отысканию отношения диаметра к длине окружности. Его нельзя найти с абсолютной, но можно определить с достаточной точностью, чтобы использовать для практических целей.
Точно так же в евклидовой геометрии нельзя построить отрезок прямой, равный длине заданной окружности. Конечно, можно получить достаточно точный результат, поставив на ребро монету и аккуратно прокатив ее по прямой на листе бумаги, но прокатить подобным образом сад круглой формы не так-то просто.
На рисунке изображена ломаная линия, длина которой очень близка к длине изображенной окружности. Горизонтальное звено этой ломаной равно половине длины окружности. Не могли бы вы найти ее с помощью простого метода, в котором использовались бы только карандаш, циркуль и линейка?
287. Автомобиль и круг.Автомобиль едет по кругу. Его колеса, расположенные с внешней стороны круга, движутся вдвое быстрее колес, расположенных с внутренней стороны.
Чему равна длина окружности, которую проходят внешние колеса, если расстояние между колесами на обеих осях 1,5 м?
288. Точильный круг.Три человека купили точильный круг диаметром 20 см. Сколько должен сточить каждый из компаньонов, чтобы круг был разделен поровну, если исключить 4 см диаметра, которые пошли на отверстие? Практическая ценность каждой доли не учитывается, речь идет лишь о равном дележе общей массы круга.
289. Автомобильные колеса.«Видите ли, сэр, — сказал продавец автомобилей, — переднее колесо автомобиля, который вы покупаете, каждые 360 футов делает на 4 оборота больше заднего; но если бы вы уменьшили длину окружности каждого колеса на 3 фута, то переднее колесо на таком же расстоянии делало бы на целых 6 оборотов больше заднего».
Почему покупателю не захотелось, чтобы разность числа оборотов возрастала, нас не касается. Головоломка состоит в том, чтобы найти длину окружности каждого колеса. Это очень легко сделать.
290. Недоразумение с колесом.Вот одно любопытное недоразумение, которое многих крайне озадачивает. Колесо делает полный оборот, пройдя расстояние от Адо В. Очевидно, что отрезок АВравен именно длине окружности колеса. Хотя для произвольного диаметра мы не сможем точно определить эту длину [16], тем не менее мы сумеем найти для нее приближенное значение с достаточной степенью точности. Так, если у нас колесо диаметром 28 см, мы можем умножить диаметр на 22, разделить на 7 и получим искомую длину — 88 см. Это, конечно, слишком грубое приближение, но если мы умножим его на 355 и разделим на 113, то получим 87,9646, что уже лучше, а умножив на 3,1416, мы получим 87,9648 — еще лучшее приближение. Но это между прочим.
Теперь заметим, что внутренний круг (ступица) тоже делает полный оборот вдоль воображаемой пунктирной линии CD, а так как CDравно АВ, длины меньшей и большей окружностей равны! Разумеется, даже младенцу с первого взгляда ясно, что это не верно. И все же, где именно допущена ошибка?
Попытайтесь ее найти. Не может быть и тени сомнения в том, что ступица за один полный оборот проходит расстояние от Сдо D. Тогда почему же CDне равно длине ее окружности?
291. Знаменитый парадокс.Есть такой вопрос, который задают постоянно, но на который я никогда не слышал удовлетворительного или достаточно убедительного для неискушенного человека ответа. Он состоит в следующем: «Движется ли на ходу верхняя часть велосипедного колеса быстрее нижней?»
Люди, не привыкшие к точному мышлению, неизменно встречают такой вопрос смехом и отвечают: «Разумеется, нет!» Они считают подобный вопрос совершенно нелепым и не достойным даже того, чтобы всерьез над ним призадуматься. «Колесо, —говорят они, — это твердое тело, вращающееся вокруг центральной оси, и если одна из его частей стала бы двигаться быстрее другой, то оно разлетелось бы вдребезги».
Тогда вы обращаете внимание .вашего скептика на проезжающий мимо экипаж и просите его заметить, что спицы в нижней части колеса ясно видны, их даже можно пересчитать; а вот в верхней части они движутся так быстро, что становятся неразличимыми. Движущееся колесо выглядит примерно так, как оно изображено на рисунке. Наш друг вынужден признать очевидное, но поскольку он не может дать объяснение тому, что видит, и не хочет отказываться от своей прежней точки зрения, то, вероятно, ответит: «Ну, возможно, это обман зрения».
- Предыдущая
- 20/70
- Следующая